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Abstract

The objective of this research is to develop and implement new techniques for real time stereo

vision for robots, based on active binocular vision using log-polar pixel layout (shown above) and

novel Gabor filter processing. The active vision platform is a high performance servo controlled

binocular mount designed and built under this project. It emulates the articulation and speed of

the human eye-head _system. High performance processin.?_ is based on local Gabor filters
embedded in global log-polar image plane geometry. This choice of geometry and processing,

developed from first principles, closely resembles the structure and function of the primate retina
and visual cortex.

Binocular stereo vision is demonstrated on an autonomous mobile robot equipped with active

binocular vision. Using real time visual guidance, the robot can perceive 3-D environments and

maneuver according to its perceptions.

The new approach to vision relieves the computational bottlenecks of conventional machine

vision, and provides robust sensory information which is well suited to real time maneuvering and

manipulation. Space applications include eye-hand coordination for manipulators and high

precision passive sensing for docking. Commercial applications include 3-D visual telepresence

for remote inspection and repair in nuclear and hazardous environments, visual autopilot for

autonomous vehicles, and real time vision for robot arms in unstructured manipulation

environments. The latter includes semi-autonomous aides for the elderly and handicapped.
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1.0 OVERVIEW

Subject

This study developed binocular stereo techniques based on log-polar retinas and a new discrete

Gabor filter. Some of these techniques were applied in real time active vision algorithms

operating on an autonomous mobile robot. The term "active vision" refers to camera servos

controlled by visual feedback. Active vision is a rapidly emerging field of research at the frontiers

of robot vision. Log-polar imaging allocates high resolution to the center of the field of view and

is therefore intimately dependent on active cameras to steer the focus of attention. Gabor filters

can be used as 2-D signal processing elements whose applications include measurements of optic

flow, local texture, and binocular disparity to subpixel precision.

Need and Dual Use

Many of NASA's space robotic tasks require 3-D spatial perception. EVA retriever, satellite

servicing, autonomous docking and manipulation are examples. Energy emitting sensors such as

radar and LIDAR consume scarce power and have limited range. Radar has lower resolution than

visual data, and LIDAR takes longer to scan per frame than video images at the same resolution.

Thus, for high precision real-time tasks, passive (non-emitting) vision is superior to alternative

sensors. Commercial applications encompass all of robotics, including new niches which are not

yet occupied because of the limitations of conventional machine vision techniques and

architectures. Applications include intelligent mobile vehicles in unstructured environments, i.e.,

security, transport, repair and autopilot applications, and ultimately, the household robot. Close

relatives of the latter include mechanical servants to aid the handicapped and the aged, potentially

enormous markets.

Approach

High resolution imagery is a valuable but costly resource which must be efficiently allocated in

any robot vision system. Log-polar image plane pixel arrays concentrate this resource dead center

in the field of view, linearly decreasing resolution from the center. Pixel count is thereby reduced

by nearly two orders of magnitude, reducing the total computation rate by the same ratio. This

speedup is of para_nount importance for real time control; servo lags would otherwise seriously

degrade performance.-Active vision aims the highest resolution viewfield at the focus of

attention; binocular coordination precisely measures range and surface configuration.

The choice of log-polar image plane coordinates has important geometric consequences for 3-D

stereo, in addition to the computational speedup cited in the preceding paragraph. Pixels from the

2-D retina divide the visible environment into 3-D cones by projection. The intersections of these

cones from two (binocular) image planes divide the environment into compartments called

"voxels" (volume cells).
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The cluster of high resolution voxels at the intersection of projected centers of log-polar retinas

defines a high precision zone of attention which can be steered in three dimensions like the

intersection of a pair of crossed spotlights converging on a target.

The visual attention process is driven by locking on to high-contrast features which can be

quantified as outputs of local filters. We selected Gabor filters because of their optimal joint

uncertainty reduction in spatial and frequency domains. Our goal was to develop a discrete Gabor

filter which would be practical for real time computation.

In our analysis and design of visual mechanisms, we selected the software tool Mathematica ® to

derive equations, implement algorithms and generate graphics.

Our proof-of-concept plan was to design and build a high performance servo controlled binocular

vision platform to test binocular stereo algorithms in real time. The platform was to be mounted

on a mobile robot platform for navigation experiments.

Results

This research successfully demonstrated the superb real time performance of an active binocular

vision system. The working prototype mimics many of the properties of human vision, and opens

the door to a new approach to real time robot vision, with commercial applications in service

robots and NASA applications in vision guided space manipulation and maneuvering.

A major innovation in this research was the design of a new discrete Gabor filter. This filter is a

high performance 2-D signal processing operator whose application is far more general than the

measurement of binocular disparity. It can be used for optic flow, texture characterization,

pattern recognition, shape from shading, and many other local-operator based vision

computations. Its computational function resembles that of the simple and complex cells in the

primary visual cortex. In binocular applications, our experiments showed that the new discrete

Gabor filter performed sub-pixel disparity measurements robustly and sensitively using less

computation than required by other methods, such as correlation. An exposition of the new

discrete Gabor falter was published in Proceedings of the SPIE Conference on Wavelet

Applications in Orlando, Spring 1994 0Neiman 1994a]. The Principal Investigator received a

NASA Certificate of Recognition for this work, which will also be reported in an upcoming issue

of NASA Tech Briefs.

The design and construction of a new high-performance servo-controlled binocular camera

platform in this project represents a major advance in the development of robotic devices. This

new platform coordinates the motion of microminiature binocular cameras at significantly higher

speed and precision, for such a small package, than any commercially available platform. Steel

band pulleys transmit large torques to the camera mounts without backlash. Speeds in excess of

1,000 °/second were achieved. Servo control was implemented using a high performance 8-axis

industrial controller.

Page 1-2



Transitions Research Corporation NASA Phase H SBIR Final Report December 1994

The system performed very smoothly, quickly, and accurately. Potential NASA applications for

this camera platform include remote 3-D vision for virtual reality and autonomous binocular

stereo for manipulators and docking.

The binocular camera platform is mounted on a self-contained mobile robot base which also

carries the PC/AT which houses the controller, frame grabber and image processor. Images were

captured and mapped to log-polar coordinates. Encoder readings and image analysis outputs are

used as error signals to steer the cameras. No external processors or power sources are

necessary, eliminating the need for umbilicals.

Experiments included simple tracking tasks, and navigation guidance via 3-D inference from

binocular viewing. The camera platform and algorithms performed superbly in these experiments.

The geometric analysis of log-polar retinas led to a "quantum geometry" which yields general

design principles for falling the singularity at the center of the field of view with uniform high

resolution pixels. Application of the rules of this geometry led to crystallographic and polar

tilings for the high resolution central region (called the fovea after its biological counterpart),

smoothly blending with the log-polar periphery. A variety of useful foveal designs were generated

and plotted.

Geometric analysis of the 3-D intersection of log-polar pixel projections showed some clear

advantages for log-polar retinas as opposed to Cartesian retinas for binocular stereo vision. The

cluster of high resolution voxels at the intersection of the two view axes provides a superb

mechanism for 3-D focus of attention. With Cartesian image planes, there is no such center and

resolution is wasted at the periphery of the zone of binocular registration. Geometric

cross-sections of the log-polar voxels using Mathematica provide a clear picture of the high

resolution zone in the center of the field of view.

In summary, theory led to important new principles for the design of real time robot vision

systems, and some of these principles were successfully embodied in a real time mobile robot

running under the control of input from an active binocular vision system.

Spin-offs attd Future Work

This project proved the viability of the new active binocular vision techniques based on log-polar

retinas and discrete Gabor filters. Their significant advantages over alternative methods opens the

door to practical real time robot vision for navigation and manipulation. Specific results of this

work have immediate implications, as follows.

The most far reaching result of this research was the design of a new discrete Gabor filter. Its

generally useful properties and high efficiency make it a candidate for the central element of a new

image processing architecture. The close resemblance of the Gabor filter to neural units in the

visual cortex suggest that the name "silicon cortex" is appropriate for such architectures.

Page 1-3
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The principal investigator is opening dialogs with other researchers as potential collaborators on

the design of a multi-GIPS (Giga- or 10 9 instructions per second) processor for video

compression and real time stereo and pattern recognition. One such dialog led to a Phase I STTR

award (1994) from BMDO to explore feasibility of such an architecture.

The binocular camera motion platform served as a Mark 1 prototype for a research product,

namely, an active vision mount whose Mark 2 version, developed under National Science

Foundation funding, is now sold by TRC to Universities and research institutions. The robotic

system delivered to JSC from this research will provide NASA with a flexible test bed to develop

visually guided navigation, tracking and docking techniques. And finally, TRC will employ the

techniques of visual guidance in its next generation of mobile robots in the service sector.

The fovea geometries we developed provide designs to improve upon the layout of silicon retinas

such as the world's first fabricated by IMEC [Sandini and Dario, 1989, Van der Spiegel et al,

1989] in Belgium, or the later model developed by Carver Mead with Eric Schwartz [Rojer, A. S.

and Schwartz, E. L., 1990, Mead 1989]. The geometric principles of binocular fields of view lead

directly to control algorithms which can be applied in the rapidly emerging field of active vision.

Guide to Contents of this Report

The remainder of this report details the results of theoretical analysis and experimental research.

Section 2 below describes the design of foveas for log-polar retinas. Section 3 analyzes 3-D

stereo geometry for log-polar sensors. Section 4 describes the new discrete Gabor filter and its

application to disparity. Section 5 describes the design of the binocular vision platform and

vehicle. Section 6 describes control algorithms and demonstration scenarios. Summary and

references are found in Section 7. Page, figure, and equation numbers are prefixed by hyphenated

section number, as in "Figure 3-9" for the 9th figure in section 3.

Page 1-4



Transitions Research Corporation NASA Phase H SBIR Final Report December 1994

2.0 FOVEAS FOR LOG-POLAR RETINAS

Figure 2-1a illustrates an array of pixels defined by a log-polar coordinate grid. The term

"log-polar" arises from the natural (log(r), O) coordinate grid which differs from the familiar (r, O)

system of polar coordinates by taking the logarithm of the radial coordinate. This choice of

coordinates is motivated by a desire to maximize both field of view and resolution while

economizing on pixel count. These conflicting requirements can be reconciled by concentrating

high resolution at the center of the field of view and progressively decreasing peripheral

resolution. Preservation of locally isotropic pixel neighborhoods and global zoom/rotation

symmetry are realized in a pattern of expanding rings of isotropic pixels whose size is

proportional to distance from the center, i.e., the log-polar array.

This distribution (figure 2-1a) is succinctly expressed as the complex exponential (conformal)

mapping of a Cartesian coordinate domain (figure 2-1b) as annotated in the figure. This

representation simplifies formulation of geometric transformations such as rotation, zoom, and

perspectivity by reducing them to elementary arithmetic (vector addition, sign reflection) on

complex numbers. In vision, figure 2-1a corresponds to the image plane pixel layout, and

figure 2-1b to the pixel indexed data structure in a frame buffer. Thus rays and rings of pixels

map into rows and columns of data. NASA JSC [Fisher and Juday, 1988] and Transitions

Research Corporation [Weiman, 1990b] have built real time hardware which performs this

transformation of coordinates on video data. IMEC [Van der Spiegel et al., 1989] fabricated a

CCD chip which incorporates physical pixel layout similar to that in figure 2-1a. The ultimate

motivation for the designs presented below is embodiment in "silicon retina" pixel geometry,

although that goal is beyond the scope of the present project.

Log(z)

27T

V

0

W=U+IV

U

a) Image plane pixel layout b) Pixel index data structure

Figure 2-1. Log-polar image plane and mapping
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The log-polar mapping

w=log(z) (2-1)

contains an essential singularity at the origin, i.e.

log(O)=-oo (2-2)

The corresponding geometric property is that pixels become inf'mitesimally small and infinitely

numerous at the center of the field of view in figure 2-1a, a physically unrealizable configuration.

The center of the image plane must therefore deviate from the log-polar pattern. In the human

retina, to be described later, this anomalous central region is called the fovea, a name which we

adopt for the anomalous center of the artificial retinas whose designs are discussed at length

below.

A straightforward solution for the design of the fovea, illustrated in figure 2-2, falls the hole in the

center of figure 2-1 a uniformly with cells whose areas equal the areas of pixels in the inner ring of

log-polar pixels. This is the approach used by IMEC for the world's first log-polar chip,

illustrated in figure 2-3. One benefit of this approach is that linear coordinates are used in the

center, permitting traditional translation-invariant pattern recognition and uniform neighborhood

size. The discontinuity in coordinates at the boundary, where (x, y) coordinates abruptly switch to

(log(r), 0), poses a problem for image transformations across this boundary, for example,

translation and rotation.

Figure 2-2. lsotropic central fill Figure 2-3. Fovea of IMEC sensor chip
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2.1 Log(z+a) Retinas

Schwartz [Rojer and Schwartz, 1990] proposed a "fovea-less" solution to eliminate the singularity

at the origin by using the mapping

log(z+a) (2-3)

which is not singular at z = 0. But what if z = - a ? Schwartz precludes this condition by

restricting z to the right half plane for log(z+a) i.e. Re(z) >0, and using a mirror image map

log(z-a) (2-4)

for the left half z-plane. This is equivalent to cutting a vertical strip of width 2.a from the image

plane, and moving the two half-maps of log(z) to join on the y-axis, as shown in figure 2-4.

Figure 2-4. Split log(z+a) maoping

The construction is easily verified

mapping of equation 2-3,

where

and

by examining the real and

eW=z+a

w=u+iv

z=x+iy

imaginary parts of the inverse

(2-5)

(2-6)

(2-7)
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whence

e w =e u+iv =eUe iv =e u (cos(v)+isin(v)) = x+a+iy (2-8)

Equating real and imaginary components yields

x=e u cos( v )-a ; y=e U sin( v ) (2-9)

For u constant (verticals in the w-plane), image plane (z-plane) trajectories are circles centered at

(- a, 0). Clearly the center of the circles, z = - a, is a singularity so Schwartz stops z at Re(z) > 0

and takes mirror image precautions (Re(z) < 0) likewise for the left-half mapping (equation 2-4),

yielding figure 2-4. This draconian measure splits the image plane with a slope discontinuity

(90 ° to 180 ° for 0 < Im(z) < a,¢/2 - ) for u-level lines right down the middle, and destroys rotation

and zoom symmetry.

2.2 Concentrically Inward Fovea Construction

The following solution to the fovea problem retains log-polar symmetry intact in the periphery,

blending rotationally symmetric rings inward, subject to the following constraints in the fovea:

Constraint 1. Equally spaced concentric rings of pixels

Constraint 2. Equal area pixels

Constraint 3. Unit aspect ratio pixels

The general objective is to maintain rotational symmetry for continuity with the log-polar

periphery, while freezing pixel size within the fovea. Some of the constraints are mildly

contradictory, as we shall show. However, by prioritizing them in the order listed above, and

gently compromising the lower priorities, we derive recipes for a few "best" foveas. We proceed

below by quantifying pixel area at the outer boundary of the fovea, and working inward to the

center with concentric rings of (nearly) equal area pixels.

Consider a log-polar retina with n pixels per ring, e.g. figure 2-1 has n=16 pixels per ring. Define

area in units normalized to the area of pixels in the innermost ring of the log-polar region just

outside the fovea, i.e. consider these as unit-area pixels. Since there are n of them per ring, the

area of the innermost log-polar ring is n. Expressing the area of this annulus in terms of its inner

and outer radii, ro and r_ respectively, where

rl =r 0 e2rt / n (2-10)

 (r,2-ro2) ro2(e4 'n-,)n
yields

(2-11)
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whence

x/-_/_ (2-12)

ro = 4e 4n/n -1

Now, ro is in linear units whose square is unit area, the size of pixels with which we wish to

populate the fovea as specified by constraint 2, above. Following constraint 3, the width of the

pixel should equal its height. Both dimensions should therefore be unity. For rings of pixels as

shown in figure 2-5, width and height correspond to arc length of the midline, (rj + rj+Drc/n, and

thickness of the ring, respectively. Their product is the area of the pixel. Now comes some

"quantum geometry". The quantity ro is generally not an integer (equation 2-12!), but the number

of rings must be. To avoid any stunted rings at either end, we divide ro into equal segments as

nearly equal to unity as possible to define concentric ring boundaries, in accordance with

constraint 1. The exception is the degenerate innermost ring of the fovea which is a disk of unit

area, i.e., whose radius is

r.=1/ 4-£ (2-13)

rj+l _ /

• r j)/2

Figure 2-5. Pixels as sectors of rings

Thus, the "best" (closest to unit thickness) number of ring boundaries intervening between

r, and ro is

m = Round( r0 - re.) (2-14)

and the thickness of the rings is therefore

h=(r 0 -rc)/m (2-15)
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Now we have another quantum geometric constraint in the orthogonal dimension: each ring must

be divided into an integer quantity of equal pixels whose area is as close as possible to unity. The

inner radii of the sequence of rings is

rk =ro+kh ; k=-1,-2,-3 .... -m (2-16)

(Note: For inwardly built foveas we use negative indices within the fovea, positive without)

Thus the area of the kth ring is

A k =2rc(ro+kh+l).h (2-17)

whence the number of pixels in the kth ring is

nk=Round(A k )= Round( 21t(ro+kh+l).h ) (2-18)

To summarize, partition the fovea into equally spaced rings whose thickness is nearly unity, in

units whose square is the area of one pixel of the first ring of log-polar pixels outside the fovea.

Then divide each ring equally into sectors, each of whose area is as close to unity as possible.

These two design principles quantize the distribution of rings within the fovea, and the distribution

of pixels within each ring, subject to the three original constraints.

Now let us consider some examples for values of n, the number of rays in the log-polar periphery,

which yield reasonable resolution ranges. First, we restrict the choice to even values of n to yield

horizontally and vertically symmetric retinas. Such symmetries are consistent with a visual world

incorporating horizons, gravity, and binocular epipolar planes. A further restriction to

powers-of-two yields tessellations which readily admit multi-resolution pyramids in the log-polar

domain, a useful but not essential characteristic.

Table 2-1 lists foveal parameters for various values of n, the number of pixels each ring of log-

polar pixels. While most are powers of 2, we also include n= 48 because it is the minimum size

which provides visually recognizable reconsmactions in image compression [Weiman 1994b]. The

values of m and h in table 2-1 are computed in accordance with equations 2-14 and 2-15. Pixel

count per ring, nk, was computed from equation 2-18. Figure 2-6 illustrates some foveas which

were generated using the parameters from table 2-1. In each case, the outer ring of pixels is the

first ring of the log-polar periphery for the values of n indicated. Note the graceful transition from

log-polar periphery to fovea.

Observe from table 2-1 and figure 2-6 that the number of pixels per ring decreases by "nearly" 2m

This is a consequence of the fact that a radius r ring (annulus) one unit thick has area 2n r, so the

difference in areas of successive tings is 2rt. Quantization into equal area pixels yields integers

whose difference between rings is mostly 6 but sometimes 7, a leap-year like progression whose
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average step is 2_. The ring sequence for n=48 deviates from this pattern because ring thickness

(equation 2-15) differs more from unity (thinner) than the sequences for other values of n. Thus

pixel count only drops 5 in two of its rings, as the quantity nk strives to accommodate unit pixel

area.

iii!!i!!ii!i!iiii iiiiii iiiiii  iiiiiiiiii iiii ili!iiiii!i!ii i!i!iii 
32 4

i_ii_i_iiiiiii i :_:ii:;_.:i:i_:?:::_:::::_:--:i:i::.:!::_.:_

1.009

_.:_.'_._:_:_6_-_-_-_'.-:_i':::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :i::.":::::: :i:
:_:__'_'_:'-'?.::[:_ _:-::_g_::?.:'::::':::- :_:.'.'::::: :: :.:::':::::: i'_'ii_:_:_:_::::::::::::::::::::::::::::::::::::::::::::::::: :'_:::

26, 20, 13, 7

48 7 .94 40, 34, 29, 23, 17, 12, 6

64 9 1.014 58, 52, 46, 39, 33, 26, 20, 13, 7

128 19 1.016 124, 117, 111,104, 98, 91, 85, 78, 72, 65,

59, 52, 46, 39, 33, 26, 20, 13, 7

Table 2-1. Fovea parameters for various perimeter resolutions

n

n = 32

Figure 2-6. Selected foveas based on table 2-1
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2.3 Concentrically Outward Fovea Construction

The constructions described in the preceding sub-section build foveas ringwise from the outside

inward, preserving equal spacing between rings but compromising pixel area somewhat. While

this method guarantees matching log-polar pixel count at the periphery of the fovea, it can leave

awkward central patterns, e.g. 7 pixels per ring, which may be undesirable for image processing at

the center of the field of view. An alternative approach builds the fovea from the inside outward,

starting with central pixel(s) of specified symmetry. Guided by similar constraints as in the

preceding section, i.e., concentric rings of unit area pixels with unit aspect ratios, start with a

circle at the center (the degenerate 0 ,h ring in subsequent subscript notation) which is divided into

no equal pie-shaped segments as illustrated in figure 2-7. For segments of unit area, the radius of
the circle must be

r(n 0 )= _-/_z (2-19)

oo:6 oo: 

Figure 2-7 Symmetry options for central pixel(s)

Clearly, large values of no would yield skinny pixels in violation of the unit aspect ratio constraint.

We quantify this measure below to set reasonable limits in central pixel count.
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The aspect ratio of the undivided circle (no = 1) is unity. For larger values of no, segment aspect

ratio can be defined as

a(no) = r(no)/ c(no ) , (2-20)

the radius, ro, divided by chord length, c(no), where

c( n0 ) = 2 r sin(rt / no) (2-21)

Table 2-2 lists radii, r(no), aspect ratios, a(no), and reciprocals of aspect ratios (for comparable

measures on either side of unity) for pie-chart segments of unit area as illustrated in figure 2-7.

:::::::::::::::::::::::::::::::::::::::::::

r(no)

a(no)
1/a(no)

.56 .80 .98 1.13 1.26 1.38 1.49 1.60 2.86 3.18

1.0 .5 .58 .71 .85 1.0 1.15 1.31 1.46 1.62

1.0 2 1.73 1.41 1.18 1.0 .87 .77 .68 .62

Table 2-2. Aspect ratios of pie-chart pixels

It is apparent that reasonable aspect ratios, i.e. between .7 and its reciprocal, are restricted to

values

no = 1, 4, 5, 6,7, 8 (2-22)

The values no = 5, 7 are to be rejected by virtue (vice) of their awkward symmetries. Having

chosen a particular value of no for the center, the strategy is to build successive rings of unit
thickness

rj+ l=rj+l , j=0,1,2 .... (2-23)

and divide them into whole numbers of pixels, each of whose area is as close to unity as possible.

Since ring area is

Aj=2rt(rj- I) , (2-24)

the number of pixels per ring is

nj = Round(Aj ) (2-25)

Now, given no as the seed for ro (equation 2-19), equations 2-23 and 2-25 yield the number of

pixels per ring as

nj=Round(2rt (r(n0)+J-½)) , j=0,1,2 .... (2-26,
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Table 2-3 lists the pixel count per ring for the eight possible choices of no ; shaded rows are

undesirable by reason of previously discussed criteria for aspect ratio and asymmetry.

Inoln, I nzln3 I n41 nsl n, nr] ns] n_ln,o I
I 1 I 7 |13 I 19126/321381441511571 63 I

6 12 18 24 31 37 43 50 56 62 68

I 8 I 14 119 126 I, 37138 [45 51 157 163 170 [

Table 2-3. Pixel count per outwardly growing ring

There is no limit to j; table 2-3 stops atj=lO for convenience. For smooth transition to log-polar

periphery, it is advisable to take advantage of n/s which are close to powers of 2 (if pyramiding is

desired) or at least even numbers. For example, note that n5 = 32 and nlo = 63 for no = 1. Thus

5-ring and 10-ring foveas yield good transitions to log-polar peripheries of n=32 and n=64,

respectively. Figure 2-8 illustrates some foveas corresponding to table 2-3.

Note from equations 2-23 and 2-24 that ring area increases by 2 _ for each ring, i.e.,

A j+ 1 - Aj = 2re . (2-27)

Thus, the number of pixels increases by about 2 n per ring, i.e. usually 6 but sometimes 7 by

virtue of the 2re - 6 residue, analogous to leap-year day-count. Table 2-4 lists the actual pixel

increment per ring, i.e. the difference between adjacent ceils in table 2-3.

noln, n, n5 n, n,I n.[n,ln,0I
I noI" nl1"n2I" n3I" n, I" n5I" n, I" n, I -n. I n_ I

lo1_6_ 66___L_6_6_J

4 6 7 6 6 6 7 6 6 6 7

161 6 16 I 6 I 7 I 61617 t616J 6 I

I'"81-516171616171616 6 71

Table 2-4. Pixel increment per outwardly growing rin_
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Figure 2-8 illustrates some of the foveas specified by table 2-3.

no= 1 nO

= no= 8

Figure 2-8. Outwardly grown foveas

Figure 2-9 plots area per pixel in successive rings for the eight choices of no. Note that worst

case errors of less than 5% (from the desired unit area) occur in the inner rings of some

configurations, but in all configurations errors diminish to 1% and less after about five rings where

their quantization errors are diluted amongst higher pixel counts.
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Figure 2-9. Pixel area for outwardly grown foveas
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Yet another strategy for building foveas outward from the center comes from the observation that

there is a predominance of 6's in table 2-4. By forcing pixel increment to 6 per ring, we can

generate more regular foveas whose pixel counts are not subject to the irrational caprices of

quantizing multiples of 2x. In order to avoid systematic area error build up, the trick is to assure

that ring radius is proportional to ring count. For unit ring thickness, this requires that ring

midlines (figure 2-5) fall on integer values, and hence ring boundaries half way in between at

rj =j+l ; j=0,1,2,3 .... (2-28)

Then pixel count is

nj =6 j ; j=1,2,3... (2-29)

The midline arc length of a pixel (and also its area, because ring thickness is unity) is thus

2x j x
m 6 - - = 1.047 (2-30)

6j 3

yielding an aspect ratio within 5% of unity while maintaining unit pixel area throughout the fovea.

Some multiples other than six, namely four and eight, yield more attractive foveal symmetries

which blend with power-of-two log-polar peripheries, at the cost of somewhat less isolxopic

aspect ratios. That is,

nj=4 j ; j=1,2,3... (2-31)

and

nj=8 j ," j=1,2,3... (2-32)

yield midline arc lengths of

and

2xj x
m4- - -- 1.57 (2-33)

4j 2

2_j
m 8 - =_ = 0.78 (2-34)

8j 4

The respective aspect ratios are the reciprocals, .64 for m, and 1.28 for m,. Since every power of

two beyond eight is a multiple of four and eight, any power-of-two log-polar periphery can blend

perfectly by using the outer ring of the four- or eight-multiple fovea as its inner ring.

Power-of-two pixel counts are desirable for image pyramiding. Figure 2-10 illustrates foveas for

these four-, six- and eight-multiple foveas.
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Figure 2-10. Foveas based on multiples 4, 6, and 8 per ring

2.4 Hexagonal-to.Polar Blended Foveas

The preceding sections described polar, i.e. rotationally symmetric, foveas, but traditional image

processing is based on linear grids which arise naturally from row-column pixel patterns.

Rectilinear (Cartesian coordinate) based techniques such as correlation, template matching, and

centroid finding could be very useful in the fovea for binocular registration and pattern

recognition. We now describe a method of seamlessly blending a linear-coordinate central fovea

with a curvilinear log-polar periphery.
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Linear coordinate tessellations of regular polygons include square, triangular, and hexagonal

filings. Of these, hexagonal filing provides the most isotropic substrate for a variety of local

image processing computations such as edge detection and associated differential measures, e.g.,

gradients. All nearest neighbors are the same distance from the center pixel, whereas diagonal

neighbors in square coordinates (the so-called quadratic lattice) are more distant by 41%.

Hexagonal tessellations also admit 3-color tilings for color vision. Hexagonal neighborhoods are

the most nearly "round" of the choices listed above; therefore they can be blended to polar

symmetry with the least amount of distortion.

The small solid circles in figure 2-11 depict the centers of pixels in a hexagonal (Cartesian)

tessellation with unit spacing. Each successive shell (solid line perimeter) contains six more pixels

than its concentric predecessor. Indefinite progression of this construction would yield a purely

hexagonal grid. But, suppose we progressively warp this configuration by moving the cell centers

outward towards their corresponding shaded circles (/th hexagonal shell to jth circle), with

100% warping achieved at some predetermined ring jmax which terminates the fovea and begins

the log-polar periphery. More precisely, given any pixel center at vector position Ix,y] in the f_

shell, its distance from the corresponding circle is

dj([x,Yl)= j-U+Y 2 (2-35)

Thus we can nudge each point to close this gap proportionally to its distance from the center to

the jmax radius at which the gap must be reduced to zero by applying the transformation

[x,y]_[x,y](l+ j-f--_dj( [x, y] ))
(2-36)

This blended configuration, illustrated in figure 2-12, yields the best of both worlds (rotational

and translational symmetry). Pixel count increases by six per ring, just as in the polar 6-multiple

characterized in equation 2-30 and illustrated in figure 2-10. Translation in the fovea along the

lines of the hexagonal grid blends to a fisheye distortion at the periphery. Rotation of imagery

throughout the field of view is effected by shift proportional to ring number in the fovea, and by a

constant amount in the log-polar periphery. Near the center, rotation is polygonally distorted

along the lines of the hexagonal perimeters. The tradeoff between translation distortion and

rotation distortion can be controlled by choosing any monotonic interpolation function rather than

the linear one of equation 2-36.

The peripheral log-polar distribution in figure 2-12 is also based on hexagonal tessellation. The

spacing is defined by superimposing a hexagonal rather than Cartesian grid on figure 2-1b, and

mapping the images of centers of circlets to figure 2-la via the conformal mapping z = e w.
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([x,y])

Figure 2-11. Hexagonal fovea

The price paid for blending linear foveas to polar peripheries is that the area of pixels is no longer

constant in the fovea, but increases by a few percent towards the periphery. In figure 2-12 we

have evaded the problem of drawing warped pixel boundaries by depicting pixels as circlets of

constant radius, centered at the centers of hexagonal tessellation. In the following sub-section,

we describe this and other geometric constructions for def'ming pixel boundaries in locally

irregular tessellations.

Figure 2-12. Hexagonal-to-polar blended fovea
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2.5 Alternative Pixel Boundary Geometries in Biology and Silicon

The geometry of pixel boundaries is a separate issue from the geometry of pixel distribution. The

latter can be characterized in terms of the distribution of the centers of pixels. In most biological

examples, e.g. the compound eyes of insects or the retinas of mammals, local distribution is nearly

hexagonal. This doubtless results from close packing of nearly identical units with simple

perimeters. In most of the preceding examples, the local pattern of pixel center distribution is

rectilinear or hexagonal. In the locally rectilinear case (which is illustrated, for example, in the

log-polar periphery of figure 2-1a), the image plane is partitioned into mutually exclusive pixels

whose boundaries are minimally expressed in polar coordinates, i.e. constant r or constant 0. This

is convenient for computer graphics programming, but other boundary strategies may be more

appropriate for fabricating photosensors. These include round pixels such as shown in figure 2-12

(whose interstices are gaps in the image plane), Voronoi tessellation (no gaps), and general filings

of the plane, mapped to log-polar coordinates. Figure 2-13 illustrates some Voronoi tessellations

based on 1-fold and 4-fold central segmentation. Voronoi tessellation provides the most efficient

packing, but could present layout problems using current VLSI fabrication techniques.

Figure 2-13. Voronoi pixel boundaries

Page 2-17



TransitionsResearchCorporation NASAPhaseH SBIRFinal Report December1994

In fabricating artificial retinas of irregular local geometry, one solution is to lay down photocells

which occupy a small area at the center of the pixel, and use microlenses to focus light to them.

Thus light-gathering efficiency is preserved, perimeter geometry can be ignored, and there is

space for local neighborhood circuitry for "silicon retina" processing.

We conclude with a qualitative comparison of the human fovea and an artificial fovea with similar

parameters, designed using the rules set forth in the preceding paragraphs. Figure 2-14 is a

drawing of the human fovea by the microanatomist [Schultze, 1866] who discovered and named

the rods ands cones of the human retina. Figure 2-15 is an artificial design based on the

6-multiple outwardly grown fovea described in section 2.4 illustrated in figure 2-10. Pixels are

represented by circlets to mimic the cone geometry of the biological example. The perimeter

blends to a log-polar distribution with n=198 pixels per ring. The fovea region corresponds to
the central 1/2 o of the human visual field.

In summary, we have shown a number of constructions which fill the central hole of a log-polar

retina with a fovea consisting of pixels of uniform highest resolution, blending seamlessly at the

boundary. In the next section we show how such sensor arrangements project a high

resolution steerable "'spotlight" into the center of a wide fieM of view.

Primate visual anatomy and behavior exhibit just such an intimate interplay between

graded resolution sensors and active vision. The speed and efficiency of such systems can be

highly beneficial to the performance of robotic vision systems.
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Figure 2-14. Schultze's drawing of the human fovea

Figure 2-15. Artificial fovea and surrounding periphery_ matching human parameters
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3.0 BINOCULAR STEREO THROUGH LOG-POLAR RETINAS

Binocular stereo vision appears at first sight to be a tractable subset of the general robot vision

problem because of its deterministic geometry: triangulation of points in space as seen in two

images taken from different viewpoints. The main difficulty encountered in practice is the

so-called correspondence problem, namely, identifying the same point in two images. Active

vision proposes to simplify the correspondence problem by tracking a target with two cameras

once correspondence has been established, by whatever initial means. Thus, the correspondence

problem does not have to be solved over and over again in real time; tracking maintains

correspondence. Log-polar image coordinates both benefit the binocular tracking process and

require it for efficient perception. The tracking process benefits from the low pixel count, the

high precision of foveal tracking, and the wide field of view for peripheral attention. Conversely,

log-polar coordinates require active vision to steer the high resolution central field of view to

points of interest.

Two cameras in general position define two coordinates frames, each specifiable by six degrees of

freedom with respect to environment coordinates. Stereo depth inference inverts the image

projection transformations through these coordinate frames, based on intersection of the viewrays

to the target point as shown in figure 3-1.

L (eft) / Pw

\\ z / / R(i )
\ //

W (odd) X

Figure 3-1. World and camera coordinate systems

Such a general formulation yields little insight into symmetries relevant to binocular stereo.

Control, mechanics, and comprehension are all improved by constraining degrees of freedom, as

described in the design below.
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3.1 Binocular Camera Configuration with 4 Degrees-of-Freedom

For this project, we designed a high performance servo controlled camera platform which

emulates much of the performance of the human eye-head system, in a simplified four degree-of-

freedom configuration, illustrated in figure 3-2. Whereas the human eyeball exhibits three

rotational degrees of freedom, each camera in our system has only one. Whereas the human neck

exhibits three more degrees of freedom, we mount the vergence system on a pan-tilt mechanism

with two degrees of freedom. These simplifications reduce the complexity of mechanics and

controls while allowing gaze in arbitrary directions with arbitrary choice of vergence angle within

the limits of excursion. Details of mechanism and control systems are given in sections 5 and 6.

Binocular coordinate geometry is given below.

Figure 3-2 illustrates two cameras separated by baseline B with principal axes Ac (left) and

AR (right). These are mounted on servo-controlled motors with parallel vergence axes VL and VR

perpendicular to AL and AR through the camera nodal points (centers of perspective projection).
The motors are in turn attached to a horizontal crossbar which tilts about a horizontal axis H

through the camera nodal points. Thus vergence and tilt are pure rotations about the camera

nodal points. The central pan axis, Vc, is the vertical bisector of the H axis.

V L VR

I

Vc

v

I

I

H

Figure 3-2. Articulation of camera mount

The general stereo triangulation problem, i.e. locating a point in space from its images in the two

cameras, is solved by inverting coordinate transformations and perspective projection as follows.

Consider the 3-D coordinates of a point P in space with respect to left (L) and right (R) camera

coordinate frames as shown in figure 3-1,
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Z L Z R

(3-1)

where the X-axis is horizontal and Y-axis vertical (negative VL and VR in figure 3-2), both parallel

to the image plane, and Z-axis outward perpendicular to the image plane (positive AL and AR in

figure 3-2).

Transforming these coordinates to the center of the H-axis, by undoing vergence angles o_ about

the Y-axes and offset B/2 from the "Cyclopean" [Julesz, 1971] center ("O" in figure 3-2), yields
"head" coordinates

XL COoL -si;o_L X [ 00 ]
PL: YL = 1 -

ZL n 1-sin°_L 0 coso_ L j Z L

(3-2a)

and

IxR]Ic°°si Rl[][:1
ZR H I_sinaR 0 c°saR _1 Z R

(3-2b)

generically abbreviated as

eft = HrM eM (3-2c)

where M is R or L and UTM is the transformation which takes camera coordinates to Cyclopean

coordinates.

Finally, inverting head pan 7 about the vertical axis -Vc and tilt ([3) about the H-axis yields world

coordinates,

and

[xL] :iCo 
ZL W ksin7

YR = 03'

ZR W lsin3'

-sin 13sin3'

COS

-sin [3cos3'

-sin 13sin3'

COS [3

-sin [3cos3'

-cos[3 sin3'-

-sin 13

COS [3
[xL]

ZL H

c°s°sin lExR]-sinl3 / YR

cos 13 J zR H

(3-3a)

(3-3b)
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generically abbreviated as

= wrHeft (3-3c)

where WTH is the pan-tilt transformation, W denotes world coordinates and M is L(eft) or R(ight)
as before.

Now, stereo triangulation involves identifying a corresponding point in each image, projecting its

viewray into world coordinates, and solving the simultaneous equations corresponding to the 3-D

intersection of the two viewrays. Figure 3-3 illustrates the perspective projection of a viewray

onto the image plane, which is parallel to the X-Y plane of the camera frame, one unit out (focal

length units) on the Z-axis. That is, the image plane is located at [X, Y, 1] v (where

superscript v indicates transpose, i.e. the column vector in accordance with the convention of our

equations 3-1,2,3) and we use coordinates [x, y]'r to distinguish these image plane points from

those of the 3-D environment.

$(t)
Y

X

0 1

Figure 3-3. Perspective projection

Thus, by similar triangles, image plane coordinates [x, y]V are

x= X/Z ; y-Y/Z

The inverse problem, generating the viewray, extends the image point [x, y]M T to the ray

(3-4)
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LtJM

in camera coordinates,

equations

sLw(tL) = WT n HTLSL(tL)

whence transformation to world

(3-5)

coordinates (equation 3-3) yields

; S R(t R) = WT H HTRS R(t R) (3-6)

which can be solved simultaneously for tt. and tR to find the 3-D point of intersection.

The disparity associated with the point of intersection of these rays is the difference in positions

of the images in image coordinates. That is, if the two image planes were superimposed, the

disparity would be the vector connecting the point in one image plane to the corresponding point

in the other, namely,

YL YR

The equations of intersection of these rays in world coordinates can be substantially simplified by

restricting pan angle a to zero. Equation 3-7 reduces to an offset in X only whence (from

equation 3-4 above)

x L =---- ; x R = (3-8)
Z Z

and depth Z is a simple function of horizontal disparity only,

B
Z - (3-9)

x L -x R

This parallel camera approach was popular in early binocular vision research because of its

computational simplicity and because correspondence search along synchronized horizontal video

sweep lines could be accomplished efficiently in shift register hardware. The correspondence of

video lines is a reflection of the property that epipolar lines are identical in the two fields of view

for parallel cameras.

One problem with parallel cameras is that disparity magnitudes are large at close ranges, requiring

a long "reach" in disparity measurement mechanisms. Figure 3-4 illustrates the magnitude of

disparity in pixels for 512 pixel cameras with 90 ° field of view separated by 25 cm (10 inches).

Note that at 25 cm disparity is 256 pixels. That is, at a range equal to binocular baseline, 90 °

fields of view overlap by only 50%. Thus the magnitudes of all disparities at this range are haft

the field of view. Such large offsets eliminate practicable local neighborhood search mechanisms

for correspondence.
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Another problem arises for active vision. Both cameras cannot simultaneously track a close

object. Thus, if cameras are parallel, one must be dominant, and the disparities will be so large

that there will be extensive areas in one field of view which have no corresponding loci in the

other, impeding correspondence mechanisms.

30_

25_

200-

__
5g- _._ -

0 1 2 3 4 5 6

Figure 3-4. Disparity in pixels as a function of range in meters for 25 cm baseline

3.2 Intrinsic Disparity of Convergent Cameras

A natural alternative to parallel camera configuration for active vision is to converge the cameras

to a target of interest so that disparity is zero at the center of the field of view [Coombs, 1992],

then maintain zero disparity by tracking. This reduces the correspondence problem to a local

operation and maintains the object of interest at the center of the field of view.

The following analysis is based on a camera servo algorithm which tracks a 3-D target by

centering it in the fields of both cameras via vergence and servoing the head pan axis angle _, so

that vergence angles are equalized, o_L = - o_R. Vergence symmetry simplifies the binocular

geometry without the penalties of parallelism described above. The symmetric vergence

algorithm was implemented in real time for the binocular head and is described later in section 6.

Consider figure 3-5 which is a top view of the symmetric convergent camera configuration

described in the preceding paragraph. The vergence angle 2o_ subtended at the target P by the

two camera nodal points, L and R, can be inscribed on a circle through these three points. From

plane geometry (equal arcs subtend equal inscribed angles) the view rays to camera nodal points

from any point P' on this circle subtend the same angle.

Page 3-6



TransitionsResearchCorporation NASAPhaseII SBIRFinal Report December1994

Thus, since the principal camera rays yield zero disparity, so do the images of all points on this

circle throughout the field of view. This special circle is known as the horopter in visual

perception. For camera imagery, objects at this locus in the environment will be in exact

correspondence (same pixel address) in the two images.

P

p,

L R

Figure 3-5. Horopter

The radius r of the horopter as a function of combined vergence angle 2et and camera baseline

separation B is

r = Bcsc(ot)sec(ot) (3-10)

plotted in figure 3-6 for a baseline separation B of 25 cm.

Small disparities correspond to small deviations in depth from the horopter. Such disparities can

be measured by simple local neighborhood operators, to build up a dense surface map of the

environment near the horopter. The Gabor f'dter, to be described in section 4, is an excellent

operator for such purposes.
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0.4

0 I0 20 30 40

Figure 3-6. Horopter radius as a function of vergence angle (degrees)

Although zero disparity correspondence is achieved for points lying on the horopter, convergent

viewing is intrinsically disparate above and below the plane containing the horopter. The nature

of the problem is illustrated in figure 3-7 which depicts the superimposed left and fight images of

a set of lines parallel to the binocular axis, in a vertical plane tangent to the horopter at the center

of the field of view, for example, horizontal lines painted on a wall directly in front of the

symmetrically converging cameras.

MOIRE' PA'FI'ERN FOR VERGENC£ ANGLE OF 15 DEGREES

Figure 3-7. Keystone effect of convergent cameras
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This perspective "keystone" effect arising from convergent camera axes introduces intrinsic

disparity as follows. If viewrays are projected from identical locations [x,y]L T and [x,y]R T in each

image plane via equations 3-5 and 3-6, they will not intersect in space, unless x = 0 (intersection

of vertical saggital plane splitting the Cyclopean field) or y=O (horopter). However, there will be

some point in space on each ray where it comes closest to its counterpart. This point can be

computed by taking the cross-product of the two rays to generate their common perpendicular,

Q(x, y ) = S L (1) x SRw (1) , (3-11)

finding the parallel planes perpendicular to Q containing the viewrays,

K L(Q(x, y)) ; K R (Q(x, y)) (3-12)

as shown in figure 3-8. The separation of these planes is the distance of closest approach of the

• Sw (tL) and Sw_(tR ). The points of closest approach arecorresponding "near mass" rays, L

designated as white dots in figure 3-8.

S L

K L

Q

K R

\ //

w (orld)

Figure 3-8. Intrinsic disparity for convergent cameras
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Figure 3-9 illustrates two views of the 3-D configuration of these "near misses" by plotting the

field of vectors connecting mutually closest points on corresponding viewrays. In this

"pincushion" diagram, the head of the pin is on the ray from the right camera (SR in figure 3-8)

and the pinpoint terminates on the ray from the left camera (SL in figure 3-8).

\
!.

o
6

Figure 3-9. Pincushion diagram of intrinsic disparity of convergent cameras

Note that pin length is zero along the horopter and vertical line through the saggital plane,

i.e., zero disparity is only possible at these loci for convergent viewing. The shape of the surface

of closest approach through the midpoints of the pins is roughly cylindrical, extending the
horopter in the vertical direction.

By perspectively projecting the midpoints of the "pins" in figure 3-9 to the image planes

(equation 3-4) we can measure the disparity intrinsic to convergent viewing. That is, in

convergent viewing, the midpoint of the pin is the 3-D locus which is most "horoptoid", i.e.

generates the smallest disparity for a pair of corresponding image points. The intrinsic disparity is

the difference in position of this point in both images. We omit the analytic expression here since

it occupies a full page of Mathematica® output and lends no insight by virtue of its complexity.

Instead, we plot the disparity vectors in the image plane in figure 3-10. The operational

significance of the large vectors in the periphery of the four intervening quadrants is that a

correspondence operator must "reach" to achieve registration in the periphery, regardless if the

horopter is locked in. Note that the horizontal and vertical mid-lines display zero disparity,

corresponding respectively to the horopter and saggital (vertical) plane splitting the binocular field
of view.
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Figure 3-10. Image plane display of intrinsic disparity of convergent cameras

Figure 3-11 displays the signed magnitudes of disparity, and figure 3-12 absolute value of these

magnitudes to reveal the bilateral and vertical symmetry. Figure 3-13 is a contour map of figure

3-12 to emphasize its roughly hyperboloid shape. The operational significance of the disparity

magnitude functions displayed here is that to maintain binocular correspondence throughout the

visual field, correspondence operators must be able to reach at least as far as the magnitude of this

intrinsic disparity.

a- y

/

!

Figure 3-11. Signed magnitude of intrinsic disparity of convergent cameras
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Y

Figure 3-12. Absolute value of magnitude of intrinsic disparity of convergent cameras

Y

-1 -0.5 0 0,5 1

X

Figure 3-13. Contour map of intrinsic disparity of convergent cameras
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3.3 Comparison of Disparity Fields for Log-Polar vs Cartesian Retinas

The preceding discussion described the disparity intrinsic to convergent binocular viewing, a

phenomenon which is independent of choice of viewplane coordinates. That is, choosing an

alternative pixel tessellation (e.g., log-polar, fisheye, etc.) would only alter the local density of

points on the intrinsic disparity surface depicted in figures 3-10 to 3-13, but not its shape. The

height of the surface, or the length of the vector_ in figure 3-10, determines the distance which

image plane operators must "reach" to achieve correspondence in that part of the field of view,

regardless of pixel tessellation. An advantage of log-polar coordinates is to reduce the required

reach for peripheral disparity measurements by virtue of increased pixel size, and hence increased

neighborhood size, as one moves to the periphery in the corner zones separated by the horopter

and the vertical plane. Figure 3-14 illustrates the signed magnitude of these disparities in log-

polar coordinates displayed from two graphics viewpoints. Note that larger disparities are pushed

further out (i.e. to the right in (log r, O) ) and that the four ridges correspond to the four

quadrants of the image plane from figures 3-11 or 3-14.

6

4 6

!

Figure 3-14 Magnitude of intrinsic disparity, mapped to log-polar coordinates

The preceding discussion described the zero-disparity curves (horopter) and near-zero disparity

surface for convergent binocular viewing. Objects in the environment residing at that locus are in

registration (or as nearly so as possible) in both images.

T
O
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A more subtle aspect of stereo perception is the ability to measure 3-D surface structure which

departs from this locus of nearly perfect registration: ridges, texture, holes, and bumps which can

be characterized by small deviations from zero disparity. The ability to measure these deviations

enriches vision with depth-of-field, rather than simple range-to-vergence measurements. Whereas

the shape of the near-zero disparity surface is independent of image plane coordinates,

measurement of such deviations is not. That is, if pixel size is non-uniform, surfaces of fixed non-

zero disparity do not conform to the shape of the horopter because fixed pixel index differences

do not correspond to fixed angular differences. The sizes of neighboring log-polar pixels are not

equal; they are "space-variant" in the terminology of Schwartz [Rojer and Schwartz, 1990]. We

examine the geometric structure of non-zero disparity below, comparing the partitioning of space

by pixel projections from binocular Cartesian grids and binocular log-polar grids.

Figure 3-15 illustrates a top view of the horopter plane, dissected by the rays projecting from

parallel cameras whose image planes are divided into the uniform pixels of a traditional Cartesian

coordinate system. The dissection pattern is a cross-section of the volume cells (voxels) defined

by the binocular intersection of the prismatic cones projecting from image plane pixels. Note that

the voxels are evenly distributed in rows parallel to the image planes, a reflection of the simplistic

depth-disparity property expressed in equation 3-9. That is, any fixed disparity corresponds to a

single row of voxels parallel to the image planes. Successively larger disparities correspond to

successively closer distances to the viewplanes. A drawback of this property is the lack of field of

view overlap at close range, as described earlier.

The size of voxels indicates the uncertainty of range measurement, which grows as the square of

range, i. e taking the derivative of equation 3-9,

dZ Z 2
- (3-13)

ds B

where s = xL - xR is disparity. Figure 3-16 illustrates the same top view of the horopter plane for

convergent Cartesian cameras. Note that voxels are arranged in concentric curves about the

horopter, but that the highest density (best depth resolution) is nearest the peripheral limits of the

intersections of fields of view where disparities are maximum.

Figures 3-17 and 3-18 illustrate the top view of the horopter plane for cameras with log-polar

image plane pixel tessellations in parallel and convergent configurations, respectively. Note that

the parallel configuration is disorderly in comparison to the Cartesian case, but the log-polar

convergent configuration exhibits a high resolution focus of attention at the intersection of the

centers of the fields of view. That is, at the intersection of the foveal projections, voxels are

smaller and characterized by more uniform aspect ratio than they are away from this zone. This

voxel configuration differs markedly from that of the Cartesian case, which has no such
differentiated center.
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Figure 3-15. Top view of parallel Cartesian cameras
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Figure 3-16. Top view of convergent Cartesian cameras
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Figure 3-17. Top view of parallel log-polar cameras
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Figure 3-18. Top view of convergent log-polar cameras
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We can more clearly characterize the contrasting structure of the binocular disparity fields for

Cartesian and log-polar retinas by examining the iso-disparity curves which are the moir6 patterns

visible in figures 3-15 through 3-18. Each moir6 fringe represents a constant difference in pixel

index between left and right viewplane projections [Oste_, 1965]. That is, indexing pixels along

the horizontal image plane axis (x-axis) in the left and right fields of view as jL and jR respectively,

a fixed disparity curve is a solution to the indicial equation

jL-JR = k (3-14)

where k is the disparity measured in pixel count. For example, k = 0 corresponds to the horopter.

lso-disparity curves are found by solving the equations for the intersections of rays

(e.g., equations 3-5 and 3-6) whose indices satisfy the indicial equation for fixed values of k.

Figures 3-19 and 3-20 illustrate these fixed-k moir6 curves corresponding to the convergent

Cartesian cameras of figures 3-16 and convergent log-polar cameras of figure 3-18, respectively.

The "wave fronts" (which correspond to moir6 fringes) emanating from the image planes

represent loci of constant disparity satisfying indicial equation 3-14. The rays which cross them

correspond to loci of equal but opposite pixel index change, i.e. excursions in range resulting from

changing net disparity while maintaining fixed "Cyclopean" direction of gaze. These

depth-of-field rays are thus solutions of the indicial equation

JL +JR = k . (3-15)

Close spacing of rays indicates fine angular (azimuth) resolution; close spacing of moir6

wavefronts indicates fine range resolution. Note that in the Cartesian case (figure 3-19) the best

range resolution is at the extreme periphery of the cameras' fields of view. In contrast, note that

in the log-polar case, there is high resolution well within both fields of view, and that at the 3-D

intersection of the binocular fovea projections, range-disparity voxels are nearly uniform and

four times denser than the Cartesian case, as a result of the higher resolution allocated to the

fovea. In general, the improvement in range resolution is proportional to the increase in

resolution of fovea pixels over uniform Cartesian pixels. This qualitative observation will be

expressed quantitatively in the next section. First, we briefly examine the vertical cross sections

of voxel disparity fields to complete the picture.
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Figure 3-19. Moir6 patterns for convergent Cartesian cameras
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Figure 3-20. Moir6 patterns for convergent log-polar cameras
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Having examined the horizontal cross-section of the binocular field for symmetrically converging

cameras, consider now the vertical (so-called saggital plane in biological vision) longitudinal

section which splits the Cyclopean field of view. Figure 3-21 illustrates the intersections of pixel

projections for parallel Cartesian cameras in this plane. The pencil of lines emanating from the

Cyclopean origin is a cross-section of the two pencils of planes through horizontal pixel

boundaries. The vertical lines are intersections of the two vertical pencils of planes projecting

from camera focal points through vertical pixel boundaries. Figure 3-22 illustrates the saggital

cross-section for parallel log-polar cameras. Pixel ring boundaries project to 3-D cones whose

intersections with the saggital plane generate conic sections (hyperbolae of various eccentricities).

Pixel ray boundaries project to pencils of planes emanating from the two principal optic axes of

the two cameras, which intersect the saggital plane in horizontal lines spaced by the tangent

function of equal angular intervals (2_/n from figure 3-28b). This can be considered as an

off-center longitudinal section of the projected image of the retina which is illustrated in figure 3-

23. Figure 3-24 illustrates the intersection of two such cones (figure 3-23) in convergent

binocular viewing, whose longitudinal section is shown in figure 3-26.

Figures 3-25 and 3-26 illustrate the saggital plane sections of the voxel field for convergent

viewing through Cartesian and log-polar retinas, respectively. In the Cartesian case, note that

once again the highest density (best range resolution) is at the periphery of the fields of view,
closest to the cameras. The limit line of verticals has moved to the left somewhat relative to the

parallel viewing configuration (figure 3-21), reflecting the introduction of vanishing points into

the fields of view. In marked contrast, the log-polar convergent viewing case shown in

figure 3-26 exhibits a well defined high-resolution center at the intersection of the principal

viewrays. This focus of attention can be steered by active camera controls through the 3.D

environment like the intersection of spotlights targeting any selected range and direction.
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Figure 3-21. Saggital plane section for parallel Cartesian cameras

Figure 3-22. Saggital plane section for parallel log-polar cameras
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Figure 3-23. Projection of log-polar retina into visual field
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Figure 3-24. Convergent projection of log-polar retinas into visual field
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Figure 3-25. Saggital plane section for convergent Cartesian cameras
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Figure 3-26. Saggital plane section for convergent log-polar cameras
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3.4 Binocular Range Resolution at the Fovea of Log-Polar Retinas

We now quantify the advantage of the high-resolution log-polar fovea over the fixed

uniform-resolution Cartesian retina for measuring range, having observed qualitative illustrations

in the cross-sections and moir6 patterns of the preceding paragraphs. The following discussion

assumes that two cameras are symmetrically converged on a target, a reflex state of our active

camera control system to be described in sections 5 and 6. Figure 3-27 illustrates a top view of

two corresponding pixels at the center of the field of view of each camera. The shaded

quadrilateral in the center is a voxel expressing the position uncertainty of a 3-D point which is

visible by both pixels simultaneously. We approximate this quadrilateral by a parallelogram to

simplify the geometric analysis which follows, justifying the approximation by noting that for

small angles, i.e. pixel subtense of a few miUiradians, the error incurred is less than one percent;

that is, pixel subtense is a differential quantity. The key observation is that the aspect ratio of

such a voxel is the ratio of range Z to half-baseline, namely,

2Z
a = --. (3-16)

B

as seen by similar triangles in figure 3-27. The length of the voxel is the magnitude of the range

error for binocular stereo. Since this quantity is proportional to pixel subtense, we can quantify

the log-polar range resolution advantage directly in terms of pixel size as follows.

Figure 3-27. Voxel geometry at the binocular center

Figure 3-28a illustrates a uniformly tessellated (Cartesian) disk of radius rv in pixel units, and

figure 3-28b a log-polar disk of the same radius and same total pixel count. That is, for equitable

comparison, we constrain the number of pixels to be equal in both "retinas".

Page 3-23



TransitionsResearchCorporation NASAPhaseII SBIRFinal Report December1994

Figure 3-28b depicts the fovea in Cartesian tessellation in order to allocate pixel count to disk

area. Of course, any of the "designer" foveas of section 2 will have approximately the same pixel

count, with more harmonious geometry.

a) uniform tessellation b) log-polar tessellation

Figure 3-28. Cartesian vs. log-polar pixel tessellation

We now parametrize the concentration C of foveal resolution as the ratio of field-of-view radius rv

to fovea radius rr in figure 3-21 b,

C = rv (3-17)
rf

The number of pixels in the Cartesian retina is then the area of the disk,

npix =r_ r2

Now, the log-polar periphery of figure 3-21b is divided into n rays and q rings where

(3-18)

q=-_--_l°geI_f )=-_Kl°geC

by virtue of conformality and unit aspect ratio pixels [Weiman, 1988a].

(3-19)
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Pixel count in the fovea is
2

n

47r

Thus, equating pixel count in Cartesian and log-polar retinas yields

(3-20)

whence

n 2 n 2 log e C n 2
npix = _ r2 = q. n + -- = + _

4rt 2_ 4_
(3-21)

2_ r v
n = (3-22)

_/I + 2 log e C

Now, the foveal radius in pixel count for figure 3-28b is

= rv (3-23)
2re _/1 + 2 log e C

and the radius in pixel count of the same region in the Cartesian counterpart is simply its radius,

rv

rf = --_-- (3-24)

by virtue of unit pixels in that domain. Dividing these two pixel counts gives the resolution ratio

C

Rf _/l + 2 log e C (3-25)

That is, equation 3-25 expresses the ratio of improvement in foveal resolution, and hence

improvement in range resolution, for log-polar foveas over Cartesian foveas, for any given

pixel count perfield of view. It is interesting to note that this quantity is independent of absolute

resolution (total pixel count), depending only on the ratio of field of view to fovea. Figure 3-29,

which plots the value of this function, shows that despite the transcendental appearance of the

equation, the relation is nearly linear with respect to C because the denominator changes so

slowly. This relation is approximated by a gain in range resolution roughly proportional to the

ratio of field of view to fovea, with a constant of proportionality of about 1/3. Thus, foveas I%

the diameter of a log-polar retina (i.e. C = 100) yield a 30-to-1 gain in stereo resolution over

Cartesian retinas with the same number of pixels.
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Figure 3-29. Range resolution ratio per fovea size relative to field of view
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Figure 3-30. Peripheral loss of resolution
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Surprisingly, the penalty paid in decreased peripheral resolution is proportionally far less than the

gain in foveal resolution. Equation 3-26 gives the ratio of log-polar to Cartesian pixel diameter at

the extreme periphery,

Rf 1
Rv - - (3-26)

C x/1 +2 log e C

This function is plotted in figure 3-30. Note that for comparable values of C figure 3-29 exhibits

more extreme behavior. Another way to characterize this phenomenon is to express the position

of the "crossover" radius rx, where Cartesian and log-polar pixels are of equal size in both retinas.

The equation for this radius is

rv
rx (3-27)

_/1 +2 log e C

Figure 3-31 plots r_/rv. Note the gradual decrease in rx which ranges from 40% of rv at C = 10 to
about 30% of rv at C = 100.

0°

0 .

0 °

O 60 80 11

C->

Figure 3-31. Crossover radius

)0

Let us now examine some practical examples using parameters in the range of typical applications.

For example, consider a binocular camera system based on 512 pixel diameter (rv = 256) image

planes with 90 ° fields of view. For a baseline B of 25 centimeters, and a vergence distance of

2 meters, equation 3-16 tells us that voxel aspect ratio is 16-to-1.
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Pixel cross section is simply range times angular subtense in radians,

2.512
-- × 2 meters = 6 mm

whence range uncertainty is

16x6mm = 9.6cm

(3-28)

(3-29)

Now consider a log-polar retina with the same total pixel count in the disk of radius rv = 256 and

a fovea whose diameter is 1% of rv, i.e., rf = 26, or C = I00. From equation 3-25, the density

ratio is 31.3-to-I, i. e., better than 30-to-1 improvement in range resolution to 3.26 mm. From

equation 3-22 log-polar ray number n is thus 503. The crossover radius is r_ = 80 from

equation 3-27.

Another interesting example is the human eye whose cone (color sensing pixels) distribution can

be closely modeled as log-polar, with a value of C close to 100 (fovea diameter is about 1% of

retinal diameter) which yields a 31-to-1 improvement in stereo resolution over a uniformly

tessellated retina with the same number of photoreceptors. With cone spacing of approximately

30 arc seconds and binocular baseline of 63 millimeters, the geometric length of a voxel is

.4 millimeters (400 microns) for close eye-hand coordination (threading a needle, or delicate

assembly at a range of 30 centimeters, elbows bent). Voxel width is approximately 42 microns.

By way of example, fine thread is about 100 microns in diameter and human hair is in the small

multiples of tens of microns.

Now, having shown that concentrating pixels in the fovea gives nearly two orders of magnitude

improvement in range resolution for binocular convergent cameras, in the next section we show

how another order of magnitude can be gained by using a 2-D signal processing filter capable of

resolving phase to sub-pixel precision for binocular disparity.
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4.0 GABOR FILTERS FOR STEREO DISPARITY MEASUREMENT

The preceding section discussed the geometry of binocular stereo, and the significant

improvement in stereo resolution produced by log-polar pixel tessellations which concentrate high

resolution in the center of the field of view. In this section we describe an efficient computational

structure for performing disparity measurements to subpixel accuracy. We define a new discrete

version of the Gabor filter which can be iterated over the image plane. This architecture could

replace traditional number crunching vision preprocessors with an array of 2-D signal processors

operating in parallel at very high speeds. In fact, the filter and architecture are inspired by the

structure of the primate visual cortex and its neuronal components, the simple and complex cells

discovered by Nobel Prize winners [Huebel and Wiesel, 1962]. Numerous models of this

structure have been described and studied in the literature. Here we offer a minimalist version

which shows promise as a practical processor in a "silicon cortex" for robotic vision.

4.1 Background: The Correspondence Problem and Active Vision

The correspondence problem may be expressed as the question:

"Given the image-plane location of a visual component as seen from one viewpoint, what

is its image-plane location as seen from another viewpoint'?"

Once the question is answered, triangulation via camera-model equations finds the 3-D locus in

the environment which generated both images. Both identification and localization are involved in

the correspondence problem. Identification characterizes the two components in the separate

images as having been generated by the same environmental object. Localization measures the

difference in position (disparity) of the component in the two images once it has been identified.

Approaches to the correspondence problem range from high level object recognition to low level

matching mechanisms. The high level approaches involve heuristics for global identification, but

the low level methods are faster, more robust, and computationally simpler in parallel

computation architectures. Low level methods are also used in nature [Julesz, 1971] and are at

the heart of the Gabor filter approach discussed below. Following Julesz, Marr's work [Marr and

Poggio, 1979] demonstrated local computational mechanisms for plausible assignment of

correspondence, given configurations with multiple possible interpretations,

Successful low level methods typically sidestep the identification problem by applying local

matching techniques. That is, without explicitly characterizing features, a measure is made of

how well one image locus matches another. Numerical measures such as cross-correlation peaks

are maximized where the match is best, and the position of the peak gives an accurate measure of

disparity. But cross-correlation is computationally expensive. This problem has been surmounted

by using Fourier transforms of both images, whose product is the Fourier transform of the

cross-correlation. The computational expense of taking a Fourier transform can be avoided by

optical holography.
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The major drawback to optical correlation is that that the operation is not localized. Marr's

approach addressed this problem by applying the zero-crossings of LaPlacians as local feature

identifiers. A shortcoming of this technique is that slight deformations in image brightness

gradients move the zero-crossings substantially, introducing noise into the measurement.

Robustness was improved by [Nishihara, 1984] who built real time hardware for correlating signs

of LaPlacians, reducing zero-crossing noise by effectively integrating over extended areas where

the sign is constant. An ingenious method related to cross-correlation was devised by [Yeshuran

and Schwartz 1989a] using the logarithm of the power spectrum (so-called cepstrum). In his

dissertation [Coombs 1992] analyzes the algorithm as an approximation of broad band filtering

followed by correlation.

Local methods suffer the dilemma of scale choice for both the reach and size of the window.

Larger windows accommodate larger disparities and improve the correlation signal-to-noise ratio,

provided the viewed object is characterized by constant disparity. As this condition is less likely

the larger the window, smaller windows more faithfully depict disparity, but with more noise.

Worse yet, if the size of the window is less than the magnitude of the disparity, correspondence

will not be achieved. An adaptive method by [Kanade et al, 1994] controls window size via

feedback from measures of local disparity coherence. This requires computational mechanisms

above the simple local neighborhood operators, a complexity which we wish to avoid.

David Coomb's landmark dissertation [Coombs, 1992] expressed a principle for overcoming the

preceding problems via active vision, which we take the liberty of paraphrasing below:

Active vision simplifies the correspondence problem by reducing disparity to zero via tracking,

eliminating the identification component of the problem so long as tracking is successful, and

reducing the disparity measurement problem to small deviations from zero.

Our objective in designing a disparity measuring operator was to minimize computation and

maximize performance based on the active vision premise cited above, namely, restricted to small

deviations from zero disparity. By "operator" we mean a local filter applied to windows of pixels,

whose output is a number signifying disparity. The Gabor filter has recently been demonstrated to

be a superb operator for disparity measurement, [Fleet, 1992], [Fleet and Jepson, 1993],

[Braithwaite and Beddoes 1994], [TiSlg, 1992]. Specifically, [Theimer and Trig 1992] have used

Gabor phase for active vision vergence servoing.

A serious disadvantage to Gabor filters is computational cost. The filter window is generally

much wider, e.g. 32 pixels rather than the traditional 3x3 neighborhoods for LaPlacians and Sobel

operators, and aliasing may introduce erroneous measurements. We designed a "minimalist"

discrete version of the Gabor filter reconciled with the finite resolution limits of the image plane

pixel array. Our criteria were to minimize neighborhood size, avoid aliasing, maximize resolution,

and completely cover the spatial and frequency domains. The result was an 8x8 filter capable of

resolving subpixel disparity. Details of the derivation are given in [Weiman 19941, excerpted

below.
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4.2 The Continuous Gabor Filter and Phase

The Gabor falter was originally devised as a quadrature mirror filter which minimizes joint

spatial/frequency domain uncertainty [Gabor 1946]. Since we know that spatial uncertainty

resolution is limited by the separation distance of adjacent pixels, we design to push the frequency

uncertainty limit as far as possible subject to the joint uncertainty constraint.

Figure 4-1

sine-cosine pair damped by a Gaussian,

where

illustrates the real and imaginary components of the continuous Gabor f'tlter, a

g(x,'_t,_,¢o ) = Gauss(x;_t,a )e i¢o x

1 2

Gauss(x,'_t, a)- o_exp¢ fff--_ )

(4-1)

(4-2)

Expanding the second term of equation 4-1 into its real and imaginary parts yields the familiar

Gabor quadrature pair, illustrated in figures 4-1a and 4-Ib, consisting of cosine and sine wave

modulation under a Gaussian envelope,

g = gc+igs (4-3)

where

and

gc(X; _t,o,o_) = Gauss(x;_t,o )cos(to x)

gs(X;_t,a,m)= Gauss(x;_t,_ )sin(o3 x)

(4-4)

(44)

The modulation m is limited by the Nyquist sampling rate of pixel tessellation and _ determines

bandpass. These parameters determine the design of the discrete ftlter shown in figure 4-2.

Before leaving the continuous Gabor filter to derive its discrete counterpart, we describe the

concept of phase because of its importance to hyperacuity, i.e. sub-pixel resolution of position.

A primary application of Gabor fdters in artificial vision is the measurement of phase to subpixel

precision (hyperacuity). A major objective of our discrete f'dter design is to measure phase

accurately and efficiently. Phase correlates with image position, which must be precisely

measured for binocular disparity and optic flow [Fleet, 1992], [Fleet and Jepson, 1993],

[Sanger, 1988], [T/51g, 1992]. Fleet and Jepson have shown that phase is robust against noise,

illumination variations, and small geometric distortions arising from different perspective

viewpoints. We illustrate Gabor phase with the following simple example.
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Consider the image of a contrast edge which is bright (intensity = 1) to the left and

dark (intensity = O) to the right of some position Xh along the horizontal axis, as illustrated in

figure 4-1c, where the shaded area corresponds to the bright side. That is,

f(x," x h) = l for X < X h ," f(x; x h) = O for X > x h (4-6)

(a)

a) ge

(b)

b) gs

f(x;xh)

(c)

(a)

x= -i 0 1 2

c) Envelope

0 1 2 3 4 5 6 7

Figure 4-1. Continuous Gabor filter Figure 4-2. Discrete Gabor filter
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Now, applying the cosine and sine components of the Gabor filter (gc and g, in equations 4-4 and

4-5) to the edge step function of equation 4-6 corresponds to the functionals

and

Gc(Xh)= _" f(x;xh)gc(x)dx = _ g c (x)dx (4-7)

G s( Xh )= _ f(x;xh )g s(x)dx = _ g s(x)dx (4-8)

illustrated by the shading in figures 4-1a. That is, equations 4-7

filters gc and g, applied to edge fix; xh). The curved outline of

figure 4-3 plots the joint trajectory of Gc and G, as Xh, the visual

edge, moves across the f'dter window. The circular path reflects

the underlying sine and cosine modulation while the spiraling to

center is a consequence of the Gaussian envelope. Any given

point on this trajectory corresponds to some position Xh of the

edge. The spokes mark quarter-unit positions of x,. Every

fourth spoke thus represents one complete unit of position

change on the x-axis, labeled in correspondence with figure 4-1.

Figure 4-1d expands the view of the x-axis above; icons are

miniatures of the phase trajectory of figure 4-3. The progression

and 4-8 express the outputs of

Gs(x)

.....ii

Figure 4-3 Gabor phase trajecto_

of icons corresponds to the phase associated with the segment in which each icon resides.

Regarding the Gc and Gs axes in figure 4-3 as components of a complex number, in keeping with

equation 4-3, the argument (phase angle) corresponds to the phase of the output of the

quadrature filter pair.

d_h = arg( Gc(xh)+iGs(xh)) = arctan(Gs(xh)/Gc(xh)) (4-9)

Note that phase is independent of both amplitude and offset of the image step function. That is,

for a stronger edge,

k f(x;xh) ; k > 1 (4-10)

equations 4-7 and 4-8 are scaled proportionally by k, and their quotient in 4-9 cancels k.

DC offsets integrate to zero, because the Gabor filter integrates to zero, so nothing is contributed

by G,. or G,.
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For Fourier transforms, phase is linear with position shift Ax, and sensitivity is proportional to

spatial frequency to,

f(x-Ax) ¢=_ e -ito Ax F(to) (4-11)

courtesy of the Fourier shift theorem. The circular portion of the trajectory in figure 4-3 shows

that this relationship holds fairly well at the center of the Gabor filter, but not at the ends. The

Gabor filter has been characterized as a localized Fourier transform. The distribution of spokes in

the lower half plane indicates that transit of one half wavelength in the spatial domain corresponds

to approximately 180 ° of phase transition, and the distribution is rather uniform. For a

wavelength of four units, this represents 90 ° phase transit per unit. Thus, even modest phase

discrimination techniques yield hyperacuity measurements for binocular disparity and optic flow.

We shall revisit this crucial property of phase in terms of discrete filters later, where units

correspond to pixels.

4.3 The Discrete Gabor Filter and its Phase

The ultimate limit to resolution is the discrete tessellation of pixels in the image plane. Their

separation dictates the highest modulation frequency possible under the Gaussian envelope of the

Gabor filter; courtesy of Nyquist this frequency o_ and the corresponding wavelength L are

o3 = rt (perpixel) ; L = 2 (pixels) (4-12)

Figure 4-4 illustrates the quantized sine wave whose frequency is given in the preceding equation,

normalized to unit amplitude. But, the Gabor quadrature pair requires a cosine wave as well, i.e.,

a quarter wave shift of the sine. For L = 2, this is unrealizable since the shift represents a fraction

(1/2) of a pixel; subpixel weighting for such a shift would yield zero value throughout as is

obvious from figure 4-4. Thus, quadrature dictates that integer valued wavelengths must be

multiples of four pixels. The highest possible frequency (shortest possible wavelength) satisfying

these criteria are

to = _/2 ; L=4 (4-13)

as illustrated in figure 4-5. Note that quantization and symmetry reduce the sine and cosine to

square waves, which simplifies computation. Dots on the x axis in figures 4-5 and 4-6 correspond

to pixel boundaries.
Y

. 1--11-1 h 1"-1f" ,. ,

....1 L..,I U U -
Figure 4-4 Highest possible frequency quantized sine wave
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Y Y

a) Cosine component b) Sine component

Figure 4-5. Highest possible frequency quantized quadrature pair

Having derived the frequency modulation for the discrete filter, we now derive the Gaussian

envelope based on bandpass requirements.

For the Gabor filter, reciprocal uncertainty constraints between image plane position and

frequency plane bandpass are in exact analogy with the Heisenberg Uncertainty Principle, as

expressly designed [Gabor, 1946]. Small values of sigma for the Gaussian envelope yield large

bandpass which leads to undesirable aliasing; [Fleet and Jepson, 1993] cite scale space phase

detection singularities arising from such aliasing. Bandpass must however be large enough to

bridge the gap between levels of an image pyramid, lest the system be blind to intermediate spatial

frequencies. For dyadic up- and down-sampling (doubling/halving in each dimension), the

custom for image pyramids, each level of the pyramid corresponds to a jump of one octave. Thus

one octave bandpass is necessary to span levels. Translating Sanger's equation 4-5

[Sanger, 1988] from frequency to spatial domains, the relation between bandpass and

(of equation 4-1) is

2_ + L.

B = log2( _ _-_) (4-14)

where B is bandpass in octaves and L is wavelength of the underlying Gabor sine and cosine

fdters. Thus, bandpass of one octave implies that the quantity within parentheses equals 2,

whence

=.48L (4-15)

The filters illustrated in figure 4-1 exhibit precisely this relation between wavelength L and

Gaussian spread _. Note that the modulated cosine la) resembles a cross section of the widely

used "Mexican hat function" defined as the difference of Gaussians or the 2nd derivative of a

Gaussian (LaPlacian of Gaussian). The companion b) closely resembles the I st derivative of a), in

keeping with Koenderink's jet bundle model [Koenderink et al, 1987].
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Now, using the quadrature pair of figure 4-5 for constructing the discrete filter, wavelength L is 4

pixels. Substituting this value into equation 4-15 yields

c_ =.48x4 = 1.92(pixels) (4-16)

for the Gaussian modulation. Figure 4-6 illustrates the Gaussian for this value of _ quantized per

pixel by integrating the continuous curve over unit (single pixel) intervals.

Figure 4-6. Quantized Gaussian for _ = 1.92 pixels

Constructively, this operation can be regarded as flipping

coefficients of the quantized Gaussian of figure 4-6.

Note that contributions beyond

four pixels from the center are

very small. Thus an 8 pixel

window is both necessary and

sufficient to accommodate the

derived values of L and c_

(equation 4-16). Figure 4-2

illustrates the quantized values of

the quadrature pair of this

discrete Gabor filter generated by

applying the envelope of figure

4-6 to the (square) sine and

cosine waves of figure 4-5.

the signs of alternating pairs of

The discrete filter offers high precision positional measurement via phase just as the continuous

Gabor filter. Figure 4-7 illustrates the phase trajectory of the discrete Gabor f'dter of figure 4-2 as

a vertical edge is moved through the window,

analogous to figure 4-3. A striking difference
between the continuous and discrete cases is that the

latter displays straight line segments rather than a

circular trajectory. Examination of figure 4-2 reveals

why. As an edge moves across any single pixel, the

contributing area under the filter grows linearly for

both the sine and cosine component. Every pixel

boundary is accompanied by a sign transition in either

the sine or cosine filter coefficient. Thus, each linear

segment in the phase trajectory corresponds to the

transit of an edge across one pixel. It is evident that

subpixel motions can easily be measured with high

precision with such a mechanism (hyperacuity).

G$

2 5

Gc

Figure 4-7 Phase trajectory of discrete Gabor filter
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a) gc
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Figure 4-8. Ideal discrete phase filter

Two minor imperfections are manifested in figure 4-7

which prevent this falter from being an ideal phase

detector. One is the small inscribed diamond shaped

trajectory near the origin, which represents the "ramping

up" of fLlter energy in the outer pair of entry pixels

(numbered 0 and 1 in figure 4-2) at the beginning of the

trajectory and ramping down at the pair of exit pixels

(labeled 6 and 7 in figure 4-2) at the end of the trajectory.

Aside from these four pixels, linear segments for the

central four pixels are nearly segregated by quadrant. The

fact that they are only nearly so comprises the second

imperfection. Segments labeled 2 and 5 (corresponding

to so-numbered pixels in figure 4-2) are 25% shy of filling

the quadrant, unlike segments 3 and 4 which fill their

respective quadrants. If pixel transits were exactly

segregated by quadrant, phase computation would be

extremely simple. Filter signs would point to pixel, and

phase would be linearly related to subpixel position.

We now "reverse engineer" the discrete Gabor filter of

figure 4-2 by adjusting its coefficients in order to establish

a linear relationship between phase and edge position and

segregate pixel transits by phase quadrant. In so doing,

we wish to preserve as much as possible the frequency

and bandpass of the Gabor falter. Thus, the underlying sine and cosine components and Gaussian

envelope should be disturbed as little as possible.

Figure 4-8 illustrates an ideal phase ftlter which

fulftlls the above requirements. Figure 4-8c is the

discrete version of its Gaussian envelope, modified

so that the outer shoulders (pixels labeled 0, 1, 6,

7) are constant at half the height of the central

plateau (pixels 2, 3, 4, 5). Figures 8a and 8b

respectively give g¢ and g_, applying the

modulation of figure 4-5. By weighting the

central four pixels equally, the phase trajectory for

the four middle pixels is a perfect square centered

at the origin with vertices on the principal

coordinate axes, as illustrated in figure 4-9. The

half-weights of the outer shoulders ramp up filter

energy to exactly reach the first vertex of the

square. Figure 4-9 illustrates the perfect

Gs

2 5

3 4

Gc

Figure 4-9. Phase trajectory_ of ideal phase filter
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association between phase trajectory and position of xh . Linear segment labels correspond to

pixel numbers, and progression along a segment is linear with xa. Arrows correspond to left-to-

fight motion of the edge xa.

Since the signs of the two filter components alternate on pixel transitions, each phase quadrant

corresponds to a single pixel. Thus the pixel index of an edge can be derived from the

combinations of the signs of the outputs of the two filters as follows.

Labeling the pixels 0 through 7 from left to fight (see figure 4-8) and quadrants 0 through 3

clockwise, the sign transition of quadrants is :

pixel # 2 3 4 5 6

quadrant 0 0 1 2 3 0 1 1

sign (go ,gs) (+,+) (+,+) (-,+) (-,-) (+,-) (+,+) (-,+) (-,+)

Table 4-1. Phase quadrant relations for ideal phase filter

The symmetry of figure 4-9 shows that this filter can be used as an ideal "phase only" filter if we

modify the definition of phase to correspond to linear segment traverse, namely,

for even quadrants and

Cc- Cs
(Xh)- Gc +[Gs[ (4-17)

G c + G s

(Xh) - ]Cc+ Cs (4-18)

for odd quadrants. Note that this filter is invariant under brightness shifts because each filter is

immune to DC changes, and invariant under brightness scaling because scale factors cancel in

numerator and denominator. The values of this phase function range exactly linearly with edge

subpixel position Xh from -1 to 1 within each quadrant (pixel). The phase value 0 exactly bisects

the pixel. The denominator is constant over the middle four pixels of the filter window. Thus, the

complexity of subpixel phase computation is simpler than the continuous case, and exactly linear

with position in the image.

Having established the advantageous properties of the discrete Gabor filter, we now extend its

definition to cover the 2-D image plane.
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4.4 Generalization of the Discrete Gabor Filter to 2-D

We derive the discrete 2-D Gabor filter by abbreviating Daugman's landmark paper

[Daugman, 1985] which generalized continuous Gabor filters from one dimension to two for

application to a model of processing in the visual cortex. Extend the Gabor filter to two

dimensions by modulating the 1-D filters with a Gaussian in the orthogonal direction,

gc(X,y;_tx,_ty,C_x,Oy,COx ) = gc(X;_tx,C_x)Gauss(y;t.ty,Oy) (4-19)

gs(X,y;_tx,l.ty,_x,_y,O3x ) = gs(X;i.tx,_x)Gauss(y;l.ty,_y ) (4-20)

as illustrated in figure 4-10.

Cross sections parallel to the x-axis are scaled 1-D Gabor f'dters thereby extending, by linearity,

the generalization to 2-D of beneficial 1-D signal processing properties regarding magnitude,

energy and symmetry. Cross sections of the 2-D Gabor filter parallel to the y-axis are scaled

Gaussians. The 2-D generalization has several important consequences for image analysis. One is

to improve signal-to-noise ratio in the detection of oriented edges. Integration along wave crests

or troughs cancels out shot noise along the edge. Noise variance is thereby reduced

proportionally to cross-wave sampling volume of the f'flter (standard o/n property of statistical

sampling theory). Additionally, Gaussian damping across the wave eliminates sinc function

ringing in that direction which would result from rectangular windowing. And finally, Daugman

shows that cross-wave damping constrains the edge-orientation tuning of the filter. Such

constraint is necessary if the filter is to respond appropriately to 2-D edges.

Figure 4-2 represents a cross section of a discrete filter along the direction of the wave. The 2-D

extension is effected by Gaussian modulation in the orthogonal direction (equations 4-19 and

4-20). Daugman shows that orientation tuning is roughly proportional to the value of o r . In our

experiments, o r values which are approximately equal to ox afford sufficient tuning to cover all

possible orientations with a set of four f'dters oriented in intervals of rt/4. By the same argument

as surrounding figure 4-6, an 8x8 window is required. Figure 4-12 illustrates the 2-D extension of

figure 4-2c, to a bivariate discrete Gaussian. Figure 4-11 applies this "ziggurat" function to the

sine-cosine pair of figure 4-5 to generate the 2-D Gabor filter extended from figure 4-2.

Now consider global coverage of the image plane at all possible orientations and spatial

frequencies by discrete Gabor filters. Starting with orientation, we can cover horizontal and

vertical orientations by transposing indices in the discrete Gabor filters, i. e., rotating them 90 °.

We have found that a 45 ° filter is also necessary because horizontal and vertical filters do not

respond well to diagonal edges due to the coarseness of quantization. However, using all four of

these orientations (horizontal, vertical, right diagonal, left diagonal), edges of arbitrary orientation

can be faithfully sensed as energy-weighted sums of these four filter outputs.
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a) cosine component, gc

Figure 4-10. Continuous 2-D Gabor filter

b) sine component, gs

Figure 4-11. Discrete 2-D Gabor fill;er

Figure 4-12. "Ziggurat" function - 2-D discrete Gaussian envelope
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Image plane coverage could be achieved by square tessellation of adjacent 8x8 blocks, each

covered by the four orientations of the Gabor filter pairs described above, as illustrated in

figure4-13a. However, the tapering energy profiles of the filters (segments 0, 1, 6, 7 in

figures 4-7 and 4-9) would leave weak zones at the borders of such tiles (white zones in figure

13a). Hence, we overlap the blocks by 50% in both dimensions as shown in figure 4-13b which

indicates neighborhood centers as diamonds. Thus the central 4x4 block gives perfect phase

readings for an edge, and the entire image plane is covered by such tiles. Figure 4-14

schematically illustrates a tessellation of discrete Gabor filters covering the image plane using the

four orientations (0, _t/4, n/2, 37r/4) which span 360 °.

a) Adjacent 8x8 blocks b) 50% Overlapping 8x8 blocks

Figure 4-13. Tessellation of 8x8 2-D Gabor filt¢.r neighborho0_l

A number of dyadic sampling schemes are available for pyramiding. [Burt, 1988] describes

efficient hardware which can compute Gaussian up- and down-sampling over 5x5 neighborhoods

at extremely high speeds. Whatever technique is used, the discrete Gabor filter can be applied as

the fundamental kernel at any level of the pyramid.

Now consider frequency spectrum completeness. By virtue of the choice of t_x = 1.92 pixels for

the (nearly) Gaussian envelope, bandpass for the filter is one octave centered at 1/4 cycles per

pixel. Any dyadic pyramiding process scales this band by exactly one octave, so that all

frequencies are covered, at half the frequency resolution for each octave. Furthermore,

superimposed frequencies are synchronized at the center of the window so that all frequency

components of a step edge are identically zero-phased when the edge is centered in the window.

Total operation count per pixel at a single layer of the discrete Gabor filter pyramid can be tallied

as follows. Four Gabor filter pairs span all orientations over an 8x8 pixel window, consuming

64x8 multiply-add operations per window. Doubling the geometric density of this operation in

both dimensions according to figure 4-13b yields 2,048 multiply-adds per window.
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Dividing by the 64 pixels in the domain yields 32 operations per pixel. For binocular stereo,

double the number of image planes, which results in 64 operations per pixel. This is exactly the

number of operations required for cross-correlation of two 8x8 windows. Some computational

advantage for the discrete Gabor f'tlter derives from the fact that haft the multiplicands are small

fixed integers rather than image data as is the case for cross-correlation. In VLSI design, more

significant advantages arise from the simple sign changes and local stripe routing of data flow.

Far more striking advantages derive from the comprehensive decomposition of image data into

fundamental components such as spatial frequency, orientation, and phase. This "demux"

operation distills the information relevant to a task, discarding the irrelevant. The effect is to

considerably reduce data flow at higher processing levels. In the next subsection we give an

example of Gabor phase which represents 128-to-1 compression of raw image data in the task of

measuring binocular disparity for stereo vision.

Figure 4-14. Tessellation of oriented discrete Gabor filters.

The array of discrete Gabor filters system presented here can be regarded as a model for certain

structures of the visual cortex, with Gabor falters as simple cells and the left- and fight-view

pairing as ocular dominance column striping. This suggests searching for biological analogs of

phase detection circuitry such as that shown in figure 4-15b. [Pollen, 1982] has demonstrated the

existence of Gabor-like quadrature pair neurons in the visual cortex. A model [Ohzawa, 1990] of

binocular disparity detection is based on the energy of such pairs. The discrete Gabor filter model

presented in our report suggests a search for cells which respond to phase downstream from these

quadrature pairs.
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4.5 Gabor Filter Phase for Binocular Stereo

Figure 4-15 illustrates application of the discrete Gaussian filter to binocular disparity. In

figure 4-15a a tree trunk is depicted as seen from two viewpoints through 8x8 pixel windows in

each of the image planes. One image is thus shifted with respect to the other, reflecting the

disparity between the two views. The pixel values of each window are input to discrete Gabor

filters shown as shaded 8x8 patches at the top and bottom of figure 4-15b.

a) image disparity b) phase disparity circuit c) disparity signal

Figure 4-15. Phase disparity
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The cosine and sine components (labeled EVEN and ODD respectively) of each filter can be

treated as real and imaginary components, respectively, of a complex number (as in equation 4-3)

whose argument is the phase of the filter. That is, for left- and right-view filter outputs,

ZL =XL +iYL ; z R =x R +iy R (4-21)

the respective phases are

0L = arg(zL) ; OR = arg(zR) (4-22)

and phase disparity is

0d =0L- 0R (4-23)

Recall that phase is proportional to pixel position of the edge, scaled according to the phase

diagram of figure 4-9 which can be regarded as an Argand diagram of the complex filter output.

The quadrant in which the filter pair output lies determines the pixel in which the edge is located,

and position within the quadrant is a linear function of sub-pixel position. For two views, two

Argand diagrams yield two arguments, whose difference corresponds to the disparity

(equation 4-23).

Phase disparity can also be computed directly by exploiting the complex number model, using the

property that the argument of the quotient of two complex numbers is the difference of the

arguments of the components,

arg(z L / ZR ) = arg(z L ) - arg(z R) (4-24)

The quantity on the right is the difference in phases of left and right images from the preceding

paragraph (equation 4-23). The quotient on the left is simply

ZL = XLXR + YLYR + i(XRYL -XLYR) _ Xd + iy d

ZR x 2 + y2 X2 + y2
(4-25)

a complex number whose numerator zd = xa + iya is expressed by combining filter outputs as

illustrated in figure 4-15b. Phase disparity is then

0,4 =arg(zd ) (4-26)

by equation 4-24.
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Thus by mere arithmetic, not programming, disparity can be generated as a hard-wired output of

the circuit shown in figure 4-15b. The measure % is recognized as the cross-correlation phase

[Kuglin & Hines, 1975]. That is, consider the Gabor falter as a local Fourier transform.

Cross-correlation in the image domain corresponds to quotient (product with conjugate, inversely

scaled by magnitude) in the Fourier domain, so the phase of the quotient is the phase associated

with the disparity shift. This measure is far more sensitive than magnitude correlation;

[Oppenheim et al, 1981] notes that the autocorrelation function for phase-only signals will always

be an impulse, i.e., much sharper than energy cross-correlation.

The phase-only representation of disparity compresses image data by two orders of magnitude

while retaining pure stereo information, devoid of imagery. The compression path starts with 128

bytes of raw data, i.e., two (left- and right-view) 64 pixel sub-images. The horizontal disparity

measure for a pair of 8x8 windows at the elevation of the horopter can be represented by a single

byte, i.e. 128-to-1 compression. This 8-bit precision is based on the additive contribution of 8-bit

image data pooled in 32 pixel bins of fixed sign in the operation of the discrete Gabor filter.

The span of the discrete Gabor filter (4 central pixels of the ideal phase filter of figure 4-9)

determines the depth-of-field for binocular stereo measurement, which is to say, four voxels. The

number of significant digits in the disparity byte determines range resolution within the

depth-of-field. Refer now to the robot vision example given at the bottom of page 3-27, with
25 cm binocular baseline between cameras, converging on a target two meters away. Voxel

resolution under this configuration was cited as 3.26 ram; thus four voxels yields 13 mm depth of

field for the discrete Gabor f'dter. Eight bits of resolution for the disparity measurement over this

range corresponds to a range resolution limit of 50 microns (13mm]256) at the horopter! A more

conservative estimate might regard the least significant bit as noise, increasing the range

resolution to 100 microns. Under this assumption, we conclude our stereo discussion with an

assessment of the gain in range resolution compounded from log-polar concentration of foveal

resolution and Gabor falter phase subpixelling, as follows. Recall that log-polar concentration in

the example on page 3-28 decreased voxel size by a factor of 31.3-to-1 in the fovea for a choice

of n = 503 rays. Gabor phase disparity resolution of 7 bits divides the resulting voxels into 32

(128/4) subpixels over the four voxel range of the f'dter (Aside: this value of hyperacuity is of the

same order as vernier acuity in human vision, which is capable of detecting a displacement in a

line as small as 1/20th the diameter of a foveal cone, i.e. 1 arc second). Thus the ratio of

improvement from these two mechanisms is

Gp.g = Gp × Gg =31.3 ×32 = 1,002 (4-27)

We conclude therefore, that the use of log-polar coordinates compounded with discrete Gabor

filter phase improves stereo resolution by a ratio of 1,0004o-1 over conventional rasters with

one-pixel resolution.
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4.6 Gabor Filters in Log-Polar Coordinates

The 8x8 window depicted in figure 4-15 represents a small local neighborhood in Cartesian

coordinates. What happens in log-polar coordinates? Consider first the fovea, which can be laid

out in linear coordinates such as Cartesian or hexagonal as described in section 2. Hexagonal

local geometry can be accommodated by affine transformation of Gabor falter coefficients, i.e.

re-weighting the coordinates to account for the underlying hexangular areas superimposed on the

square pixels of the Cartesian def'mition. Figure 4-16 schematically depicts a hexagonal

arrangement of pixels with Gabor filter weighting superimposed.

Figure 4-16. Hexagonal neighborhood Gabor filters

Figure 4-17 illustrates the two-pixel-wide striping pattern of "vertical" discrete Gabor filters

superimposed on the hexagonal-to-polar blended fovea of figure 2-12. In the center of the fovea,

geometry is linear and phase is proportional to image plane distance, as described in the preceding

sub-section. In the periphery, however, columns are bowed along the ray-ring pattern of the

pixels. Phase is to be interpreted here as linear in log-polar coordinates, i.e., within the "brain

map" of figure 2-lb. Because the mapping is conformal, sufficiently small local neighborhoods

are scaled, rotated versions of their counterparts in the pre-mapped (image plane) domain. That

is, disparity measures must be scaled by local pixel size and oriented by local ray-ring layout.
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Figure 4-17, Discrete Gabor filter stripes for "vertical" orientation

Because the pixel pattern is intrinsically discrete, however, neighborhoods are not infinitesimal,

and discrete Gabor filters in log-polar neighborhoods will exhibit some bowing distortion,

proportionate to the coarseness of the ray sampling density, n. That is, for n rays, an 8x8

neighborhood arc subtends 16_/n radians and bowing error (chord to arc distance) is

err b =l-cos(8_//n) (4-28)

as illustrated in figure 4-18.

Figure 4-19 plots equation 4-28, showing that relative error is 2% at n = 128, declining by a factor

of 4 for every doubling thereafter, as one would expect from the Taylor series of the cosine. In

designing a retina with pyramiding, one must plan for the decreased resolution at each subsequent

level, which exacerbates bowing. For example, a 3-level pyramid with n = 512 at its f'mest level

(close to the robot vision example of pages 3-28 and 4-17 where n = 503) has a coarsest level

with n = 128, yielding a 2% bowing error according to figure 4-19. This value is quite

manageable, corresponding to 5-6 bits of energy accuracy in f'dter output. However, log-polar

retinas starting with, for example, n = 64 pixels per ring at the finest level of pyramid resolution,

cannot support pyramiding because bowing will be excessive after the first level.
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err b

Figure 4-18. Bowed neighborhood
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Figure 4-19. Relative bowing error from arcing window

In the periphery the curvilinear tings and rays of pixel infrastructure support curvilinear rays and

rings of discrete Gabor filters. In the fovea, the linear pixel layout supports linear Gabor filter

templates, albeit distorted where polar compromises increase near the periphery. Because the

boundary between fovea and log-polar regions is seamless, the progression of discrete Gabor

filters from nearest neighbor to nearest neighbor is also seamless as shown in figure 4-17.
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However, conflicts arise if filter windows are chained sufficiently around an arc of the periphery

to meet their "parallel" counterparts from the fovea. This is unavoidable because of the inherent

difference in coordinate systems in the two domains. The conflict is of no consequence for stereo

because disparity operators are inherently local. For binocular viewing, disparity is a I-D

phenomenon along the horopter and vertically oriented disparity operators are both necessary and

sufficient to perform the task.

Global stereo surface reconstruction requires higher order integration of the local discrete Gabor

filter outputs. The mechanisms of such integration are addressed by [Florack et al, 1992], but are

beyond the scope of the current work.

Section 4 concludes the analysis section of this report. The next two sections describe equipment

and experiments delivered to NASA to demonstrate some of the principles described above. The

discrete Gabor filters were NOT implemented on the robot due to resource runout. However,

C-programs were delivered to illustrate the phase behavior of the discrete Gabor function on

step edges.
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5.0 DESIGN OF MOBILE ROBOT WITH BINOCULAR VISION

A mobile robot with binocular vision, illustrated in figure 5-1, was constructed to test and

demonstrate new methods for visually guided navigation. These methods are based on active

binocular stereo which measures range quickly and accurately. The use of log-polar coordinates

and Gabor filter feature detectors are important for efficient processing.

Figure 5-1. Mobile robot with binocular vision
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Our major requirements for the robot were that it be self-contained, i.e. no umbilicals nor radio

communication to external processing, and that visual processing be sufficiently fast to servo

vehicle motion in real time. These objectives were achieved using off-the-shelf high-performance

processing cards in an onboard PC/AT computer. The processing environment was designed for

flexibility in research applications. Higher performance boards which become available in the

future can replace current boards. Evolutionary migration to higher performance, or

revolutionary replacement of the entire processing architecture can be achieved without modifying

mechanical or electrical elements. Below we give an overview of the equipment. Details are

given in manuals which accompany the equipment.

Figure 5-2 delineates the three major mechanical sections of the mobile robot. The top section

contains the vision head, its drive motors and their amplifiers. The middle section contains video

monitors, a PC/AT computer and associated boards, and batteries and power supplies for the

electronics. The bottom section is a LabMate mobile robot base containing its own batteries and
controllers. On the surface of the middle and bottom sections are sonar transducers which can be

used for collision avoidance and navigation.

Binocular
Camera
Platform

Processor
and System
Electronics

LabMate
Mobile
Base

Figure 5-2. Side view of mobile robot
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5.1 Binocular Camera Mount

The binocular vision head in the top section of the robot is a high-performance 4 degree-of-

freedom camera mount holding a pair of microminiature Elmo cameras. Figure 5-3 schematically

depicts the articulation and specifications. The outermost articulation consists of parallel

independent vergence axes VL and VR driven directly by brushless DC motors. Speeds up to

1,000 ° per second are possible. The head tilt and pan axes, H and Vc are driven via stainless steel

belt pulleys to eliminate backlash.

V L VR

_ B ='
I I

I

VC

H

Axis Range Max

Velocity

Max

Acceleration

V L , V a +/-45 ° 1,000°/sec 13,000°/sec 2

H +/-45 ° 7500/sec 7,500°/sec z

Vc +/-45 ° 500°/sec 4,200°/sec 2

Figure 5-3. Binocular vision platform articulation and specs
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Figure 5-4 illustrates the external structure of the camera platform. The base houses amplifiers

and control electronics, and the motor for head pan drive about axis Vc. Figure 5-5 is an outline

drawing with dimensions.

Figure 5-4. Photograph of binocular camera mount
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I

"2-

Figure 5-5. Outline drawing of binocular camera platform
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5.2 Processor System Configuration

The processor is the major component of the middle section of the vehicle. Figure 5-7 depicts the

system configuration and interconnects. An IBM PC/AT compatible is mounted in a 19" slide-out

rack. Its slots are occupied by the 66 MHz 486 host, two Data Translation frame grabbers, two

Alacron FT860/2-AT dual i860 RISC processor boards, and a Delta Tau PMAC 8-axis motor

controller which drives the camera mount. The architecture of the Alacron boards is shown in

figure 5-6. Note the high speed internal bus and dual RISC processors. The board is capable of

100 million instructions per second (MIPS). The Data Translation boards serve as image
memory, and Alacrons as image processors for the two visual channels. Twin color 11" monitors

are mounted above the 19" rack, to view the contents of image memory and processing results.

These are very useful for illustrating visual processing in real time.

The keyboard for the computer slides out from the middle section; the monitor is a flat-panel

VGA color screen anchored at the top of the middle section.The LabMate mobile robot base can

be manually jockeyed via joystick, or driven by motion commands over an RS-232 port. The

latter is the mode for autonomous navigation, whether by visual, sonar, or other sensory
guidance.

Software for controlling the system is written in C. A menu driven user interface can be used to

select various demos, described below. The modular software can be accessed via programming
to implement custom designs at the discretion of the user.

I i860 XP t; I i860 XP _50 MHz [ 50 MHz [5

L i8---_ ProcesSorE" ] Interrupt

| Arbitration [

I
200 MB/Sec FT200 Internal Bus

I
8, 16 MB t"

DRAM Ii

Control=o=i,,o=[=0 ]

Expansion [_

FT200 Bus [i
Arbitration [_

Boot PROM ]

Serial Port ]

VSB ]

Figure 5-6. Alacron i860 board architecture
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Figure 5-7. Mobile robot system configuration
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6.0 CONTROL ALGORITHMS AND DEMONSTRATION SCENARIOS

Several scenarios were implemented to demonstrate the various elements of the system, and to

provide software components which can be reconfigured to suit arbitrary experimental

configurations which NASA may wish to develop without outside help. The major software

elements are delegated to functions including image acquisition and routing, mapping, geometric

computation, motion control, and user interfaces. Instructions for running the demonstrations,

module description, and displays are given in the Robot and Applications Software Guide
delivered with the hardware. We summarize the scenarios below.

6.1 Passive Scenarios

This group of demonstrations illustrates mathematical image processing involved in binocular

stereo. Components include log-polar mapping, sub-pixel disparity measurements via the discrete

Gabor filter, and 3-D inference from inverse projection through image and mechanical kinematic
transformations.

Log-polar mapping

The first scenario is simply a demonstration of the log-polar mapping on the video monitor via

menu commands. The resolution gradient is graphically demonstrated in a tiled reconstruction

which displays live video from the camera with high resolution in the center, and low resolution in

the periphery. An alternate configuration directly displays (log(r), O) coordinates. While this

view is difficult to intuit, it vividly demonstrates the data compression and warped streamline flow

induced by motion, for example, rotation and zoom are transformed into vertical and horizontal

translation, respectively.

The log-polar mapping and tiled reconstruction in these demonstrations are carried out in

software on the Alacron i860 boards. The frame rate is about three per second, which is 20 times

faster than the host could perform alone. This rate results from the concatenation of the following

delays. Two video fields (16 milliseconds each) usually occur before a "ready-to-acquire" flag

rises. This delay is unavoidable because host programs are asynchronous with respect to video

clocks. Acquisition in the flame buffers requires two more field times (33 ms), and finally,

transmission over the DT-connect bus to the Alacron processors requires two more field times

(33 ms). Thus we have accumulated about 100 milliseconds for acquisition and transfer.

Processing in the Alacrons requires nearly 250 milliseconds, for a grand total of 350 milliseconds.

A number of commercial products have emerged since the beginning of this project which could

significantly speed up the mapping process. Pulmx now offers a low cost (under $2,500) digital

camera which could dump data directly into Alacron memory, reducing the 100 milliseconds of

acquisition to 33 milliseconds. Additionally, half the i860"s are used for data transfer in the

current configuration.

Page 6- l



Transitions Research Corporation NASA Phase II SBIR Final Report December 1994

With the digital camera, Alacron computation capacity is therefore doubled, requiring only 125

milliseconds per frame for mapping. The total would thus be about 150 milliseconds, a frame rate

of about 7 per second.

Even more significant gains could be realized by using the new PC/AT version of the CNAPS

parallel processor from Adaptive Solutions, Inc. This unit has ten times the processing power of

the Alacron, potentially cutting computation time to 15 milliseconds for a total of about 50

milliseconds per frame, which corresponds to 20 frames per second. This board was not yet

available when components were purchased for the current system.

Demonstration of S ubpixel Phase Sensitivity of Gabor Filter

A major accomplishment of this project was the design of a new, efficient, discrete Gabor filter

which can be used for disparity measurements accurate to a fraction of a pixel. This

demonstration, filter.exe residing in directory c:\gabor\filter in the on-board PC/AT, illustrates

the robustness and sensitivity of the Gabor function in measuring the position of a synthetic visual

edge to subpixel accuracy. The user can choose Gabor filter weights and orientation of an edge,

then move the edge across an 8x8 pixel window in 1/8 pixel increments using the arrow key on

the PC/AT keyboard. Defaults are provided for the parameters above if the user does not wish to
think.

As the user moves the edge across the window, a display in the upper left shows the progress of

the edge. Two sets of quadrature pair filters in the lower left depict progress over the weight

masks likewise. To the right of each of these is a phase/magnitude plot which vividly illustrates

the separation of pixel transit by phase quadrant. Mathematical explanation of this phenomenon ks

given in section 4 of this report and in [Weiman 94a].

Depth Ranging

In this scenario the camera drives are locked in an arbitrary position, and a point light source

target is presented in the common area of their fields of view. The positions of the images of the

light in left and fight cameras determine _ , _r and q_ , q_r, respectively the horizontal and

vertical components of the angles of deviation from the optical axes AL and AR in figure 3-2.

These angles, together with the joint angles o_r, ot_, [3, T of the cameras, are fed in to the inverse

kinematic equations (shown in detail in section 3.1 of this report) of the mechanism to determine

3-D position of the target.

The display on the PC/AT monitor shows a top (left half of screen) and side (right half of screen)

view of the inferred depth. The camera is depicted as a large filled square, and the target as a

small filled square. The display is dynamic; as the operator moves a target around in front of the

cameras, the display moves in real time, tracking the target.
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6.2 Active Scenarios

This group of scenarios illustrates active vision at progressively more complex levels. The lowest

is stepwise camera tracking of a target. Next is continuous binocular tracking, and third is mobile

robot vehicle control by visually following a moving target and maintaining a fixed following
distance.

Saccades

In biology, a saccade is a sudden jump in the direction of gaze of the eye, from one stationary

position to another some distance away. The move is characterized by maximum accelleration

and rapid settling time. Vision is disabled during the move, whose purpose is to attend to a new

point of interest as rapidly as possible.

In the demonstration scenario, the cameras are stationary in some arbitrary initial .position. A

light is held at some general position within the fields of view of both cameras. When the "enter"

key is depressed, the positions of the images of the lights are fed through the inverse kinematics

to compute the motor commands necessary to bring the images to the center of the field of view.

The cameras then move to that position via "open loop" control (as in the biological counterpart)

as quickly as possible. Successful centering verifies the kinematic model. This motion control

mechanism can be used as a building block in more sophisticated artificial vision scenarios where

the peripheral stimulus might be motion, color, or perceptual salient.

Camera Target Tracking

In this demonstration, the target is moved about in front of the cameras, which dynamically track

it. The tracking algorithm uses velocity control proportional to angular distance from image

center to target. Thus, higher speeds occur for greater deviations. The cascaded articulation is

handled as follows. Vergence cameras move to zero out the horizontal component of angle

between target image and optical axis. Independently, pan does likewise for the vertical

component of target image. Beneath these, the head pan axis tries to zero out the average angle

of vergence cameras, without reference to image position, i.e., based only on encoder position.

The behavior in response to a sudden jump in target position is saccadic motion of vergence and

tilt axes, and slower "catching up" of the head pan axis to squarely address the target. This is

much like primate visual response [Ballard, 1991], [Brown, 1990a, b]. The eyes instantly flick to

a new target while the more massive head catches up. For tracking a smoothly moving target, this

simple algorithm provides smooth camera motions. Oscillatory coupling between head-pan and

vergence is eliminated by the longer effective time constant of the former.

We formalize the preceding description as follows. Let a_ and ctr refer to angular position of the

vergence motors about the VL and VR axes in figure 3-2, let [3 refer to tilt angle about the H axis,

and T to head pan angle about the Vc axis.
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Let _ and _r refer to the horizontal components of the angle between target and optical axes AL

and AR in the left and right camera images, and 9t and (pr the vertical components. Figure 6-1

illustrates the control algorithm described in the preceding paragraph. Note that vergence and tilt

are velocity outputs controlled by image position error, whereas neck pan is purely a function of

summed vergence position from encoders.

+

+

Figure 6-1. Tracking control for 4-DOF camera motion platform

Integrated Vehicle and Camera Tracking

Integrated vehicle and camera control is a simple extension of the preceding camera motion servo.

The vehicle, which supports the binocular camera mount, is driven to exercise "follow-me"

behavior, as if pulled by an imaginary stretchy handle reaching from the target position to the

center of the vehicle. This is accomplished by specifying the length of the "handle" a priori and

defining the distance error as the difference between this length and the distance to the target as

measured by vergence angle of the cameras, which are tracking the target as specified in figure

6-1. This error signal controls the forward velocity of the robot. Thus, the handle acts like a

spring, stretching to speed the vehicle, and compressing to slow it down. Figure 6-2a illustrates

the system diagram.
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Vehicle steering is controlled in the same manner as the camera mount neck. The error signal for

vehicle steering control is neck pan angle T, as illustrated in figure 6-2b. This signal controls

heading turn rate by adjusting the speed of left and right drive wheels equally in opposite
directions.

a) speed control

handle length

V

V

iiiiiiiii!iiiiiiiiiilJji!ili!!i!iiiiii!iiiii!i!!!i!!!iiii!i!!!iii!!i!ii
ii!iiiiiiiiiii  !i! !!!i!!i!ii!il
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

iiiiii!iii!iiii iiiiiiiiiiiiiiiiiiiiiiiiii 
:ii_:i!_i!_i:;:i!i!iiiiiiliiii!iiiiiiiiiiiiiiiii_iiiiiiiiiiiiili:il.
!-?_:_!!i::i:!!_ii_i::ii.i::iii_i:!i'ii!!_!i:!!:i_!_:_!_i:iii_i_i_

b) steering control
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ii!iii!!ii!!iiii! !iiiiii!i!ii!!i!!i!iii!iii!i!iiiii

Figure 6-2. Vehicle control based on inputs from camera mount position

The servo algorithms described above are examples which have been programmed into the

deliverable vehicle. These programs may be used as modules for more complex behaviors,

programmable in C. The open architecture and modem software development environment give

the user complete control over all algorithms.
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7.0 SUMMARY AND REFERENCES

We have presented design principles, parameters, and a prototype platform for an active binocular

vision system which operates in real time using innovative techniques at several fundamental levels. At

the sensor level we prescribe log-polar coordinates to maximize central resolution, minimize pixel

count, and provide useful coordinates for geometric transformations. Image plane pixel count is

reduced by 30-to-1 compared to uniform tessellations with equivalent central resolution and field of

view. At the first processing level, we recommend discrete Gabor filters as 2-D DSP's to extract phase

reformation at sub-pixel resolutions. The compact neighborhoods and simple structure of these filters

is commended for VLSI implementation in highly parallel form. Together, the log-polar pixel layout

and Gabor filter phase disparity improve binocular stereo range resolution by a factor of 1,0004o-I

compared to conventional Cartesian rasters of comparable pixeI count, field of view, and single

pixel resolution.

Finally, at the mechanical level, we constructed a high precision binocular camera platform with no

backlash, employing micro-miniature cameras for accurate, high-speed motion. The controls and

processors are commerciaUy available PC/AT based boards for flexibility and ease of programming.

The system is housed on a self-contained mobile robot without umbilicals. The integrated system can
serve as a testbed for binocular vision research in realtime scenarios.
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